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Abstract
Key message  Developed species-specific allometric equations using terrestrial laser scanning (TLS). Found signifi-
cant species-specific differences in branch biomass allocation. Introduced a non-destructive method for estimating 
urban tree biomass.
Abstract  Urban trees contribute to climate change adaptation by providing multiple ecosystem services, including carbon 
sequestration. Yet accurate information about above-ground biomass, particularly branch biomass, is scarce. This study aimed 
to develop allometric models for estimating branch biomass for ten common European urban tree species using terrestrial 
laser scanning (TLS) and quantitative structure models (QSM) data. Conducted in Munich, the study analyzed 3,283 trees, 
using structural variables such as diameter at breast height (dbh), height, and crown diameter. The dbh of trees in the dataset 
reached up to 0.8 m, with mean above-ground biomass ranging from 550 to 1.496 kg C, and branch biomass from 32.2 to 
164.5 kg C. The results confirmed that dbh was the strongest predictor of branch biomass (r = 0.69–0.9), and adding height 
improved model accuracy (R2 = 0.69–0.93). Species-specific models revealed significant variations, with R. pseudoacacia 
showing the highest branch biomass when standardized by tree height, and P. nigra 'italica' the lowest. Conversely, when 
standardized by dbh, P. acerifolia showed the highest branch biomass and C. betulus the lowest. Comparisons with established 
forest tree models revealed that the developed allometric models tend to underestimate branch biomass for most species, with 
deviations ranging from 1 to 36%, reflecting unique growth forms and urban environmental conditions. The study highlights 
the need for species-specific allometric models to improve assessments of ecosystem services provided by urban trees.
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Introduction

Urban trees are crucial for ecosystem services, with their 
size and structure directly influencing urban forest function-
ality and associated economic, social, and ecological ben-
efits (Chave et al. 2014; Forrester et al. 2017; Henry et al. 
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2013; Paul et al. 2016; McPherson et al. 2016; Stoffberg 
et al. 2010; Xiao et al. 2000). Accurate quantification of 
above-ground biomass (AGB) is essential for evaluating car-
bon storage and understanding the full range of ecosystem 
services (ESS) provided by urban forests (Arseniou et al. 
2023; Baker et al. 2019; Casalegno et al. 2017; Nowak and 
Greenfield 2020; Phillips et al. 2019). On the other hand, 
below-ground biomass (BGB) is also an important parameter 
in understanding total tree function and ESS. However, stud-
ies showed that BGB responses to diversity are frequently 
weak or inconsistent, making AGB a more robust and rep-
resentative metric for productivity and ESS assessment 
(Martin-Guay et al. 2020). Further, measuring below-ground 
biomass (BGB) requires different methods and is difficult to 
measure in urban environments due to built infrastructure 
and safety reasons. Tree AGB can be directly measured by 
weighing tree components (i.e., branches, stems and leaves) 
and quantifying the moisture of green biomass after a tree 
has been harvested (Arseniou et al. 2023; Burt et al. 2019; 
Kükenbrink et al. 2021). However, this method is time-con-
suming and costly, and only a limited number of trees can 
be destructively sampled in urban areas (Calders et al. 2015; 
Weiskittel et al. 2015). Therefore, the total AGB of trees and 
their biomass components (mass of branches, main stem and 
leaves) are usually estimated indirectly with allometric mod-
els—statistical models defining relationships between tree 
biomass and commonly measured tree variables e.g., diame-
ter at breast height (dbh), tree height, and crown dimensions 
(Dettmann and MacFarlane 2019; MacFarlane 2010, 2015; 
Radtke et al. 2017; Ver Planck and MacFarlane 2014, 2015). 
The abbreviations of technical terms used in this paper are 
summarized in the glossary provided in the supplementary 
section (see Table S1).

While allometric equations are widely used in forest men-
suration, their application to urban trees are complicated 
by distinct growth patterns mainly due to heterogeneity in 
urban growth conditions and biomass distributions not found 
in forest settings (Anderegg et al. 2015; López-López et al. 
2017; Peper and McPherson 1998). Urban trees exhibit dis-
tinct growth patterns and biomass distribution across their 
stem, branches and leaves. For example, tree crowns in 
forests often compete for limited space and may not reach 
their full expansion potential (Martin et al. 2016). Conse-
quently, the development of allometric equations modified 
to urban open-grown trees has been inconsistent (McHale 
et al. 2009).

In recent years, landscape architects and planners have 
become increasingly dependent on three-dimensional (3D) 
models to envision diverse landscapes using allometric equa-
tions for tree growth modelling (Larsen and Kristoffersen 
2002). Recent advancements in terrestrial laser scanning 
(TLS) have revolutionized the field of non-destructive bio-
mass estimation. TLS enables precise measurements of tree 

architecture, providing valuable data for developing accurate 
allometric models (Barbeito et al. 2017; Calders et al. 2015; 
Stovall et al. 2018). The integration of Quantitative Structure 
Models (QSM) with TLS data, as explored by Raumonen 
et al. (2013) further enhances the ability to estimate biomass, 
particularly in urban environments where traditional meth-
ods face limitations. The essence of trees’ QSMs are detailed 
geometrical and topological woody tree segments above 
the ground (Åkerblom et al. 2017). They reconstruct dense 
point clouds to cylinders to inspire the further potential of 
the data in describing an overall branching pattern (i.e., 
towards zenith angle) and the length, radius, and volume 
for every single branch segment. Multiple methods to con-
struct QSMs were invented over a decade, including SkelTre 
(Bucksch et al. 2010), treeQSM (Raumonen et al. 2013), 
PyTree (Delagrange et al. 2014), simpleTree (Hackenberg 
et al. 2015), 3D forest (Trochta et al. 2017), AdTree (Du 
et al. 2019) and AdQSM (Fan et al. 2020). In recent years, 
TreePartNet applied a neural network in this process (Liu 
et al. 2021). However, previous studies were developed from 
limited datasets that may exhibit bias across various species 
and environmental conditions (López-López et al. 2017). 
And lower precision is expected in describing the fine ends 
of branches. Nevertheless, the convergence of high-resolu-
tion remote sensing and TLS technologies offers a promis-
ing solution for mapping and quantifying individual trees in 
urban landscapes (Roman et al. 2017; Seiferling et al. 2017; 
Erker et al. 2019; Parmehr et al. 2016; Ucar et al. 2018). 
TLS provides a non-destructive approach for quantifying 
tree architecture and dimensional properties (e.g., woody 
volume), which can be converted to AGB estimates (Calders 
et al. 2015; Disney et al. 2018; Kaasalainen et al. 2014).

This advancement has been increasingly applied in for-
est surveys, allowing remote sensing specialists to cap-
ture detailed tree structures. For example, TLS has been 
used to assess crown characteristics (Barbeito et al. 2017), 
describe crown displacement (Seidel et  al. 2011), and 
analyze crown profiles (Ferrarese et al. 2015). It has also 
been applied to measure crown volume and surface area 
(Fernández-Sarría et al. 2013; Metz et al. 2013), branch 
angles (Bayer et al. 2013), and to map stem and branch 
topologies (Lau et al. 2018; Tarsha Kurdi et al. 2024). 
However, there relatively a few studies utilizing TLS for 
AGB estimation in urban environments (e.g., D’hont et al. 
2024; Fernández-Sarría et  al. 2013; Kükenbrink et  al. 
2021); ; , ,  Wilkes et al. 2018, Wu et al. 2022). These stud-
ies have consistently demonstrated the high accuracy and 
potential of the TLS method for non-destructive biomass 
quantification in complex urban settings.

Nevertheless, despite the advancements in QSM tech-
niques and the application of allometric equations, the 
accuracy of branch biomass estimation using the QSM 
data derived from TLS remains insufficiently explored for 
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urban tree contexts. Therefore, the aim of this study was 
to develop a non-destructive branch biomass model based 
on allometric relationships for ten European abundant tree 
species by utilizing the TLS and QSM data. We aim to 
answer the following questions:

Q-1: Can species-specific allometric equations be 
developed to estimate branch biomass using Quantita-
tive Structure Model (QSM) data derived from Terres-
trial Laser Scanning (TLS)?
Q-2: Are there significant differences in the relationship 
between tree structural dimensions (dbh, height, and 
crown diameter) and branch biomass among different 
tree species?
Q-3: Do the allometric relationships observed in urban 
trees differ significantly from those found in previous 
studies based on forest-grown trees?

Materials and methods

Material (TreeML‑Data)

In this study, we employed the open-access TreeML-Data 
dataset (Yazdi et al. 2024) for model development. This 
dataset includes 3,283 point clouds of trees from public 
green spaces in Munich, which is the third largest city in 
Germany, with a population of 1.6 million (LH München 
2023). Munich has a temperate climate with warm sum-
mers, and the close proximity to the Alps influences its cli-
mate. Munich boasts a wide variety of tree species that can 
enhance the diversity of our urban tree dataset for model 
development. Based on our knowledge, TreeML-Data 
is the only open-source QSM dataset available for urban 
trees. Consequently, we utilized this dataset as the primary 
resource for our study.

TreeML-Data comprises dbh, tree height, and crown 
diameter. This data was used as the primary material for 
our model development. Besides, QSMs, as detailed tree 
structure measurements and tree graph structure mod-
els relevant to these urban trees, were also included in 
TreeML-Data. The QSMs were originally obtained from 
point clouds for individual trees. TreeQSM Raumonen 
et al. (2013) was programmed in MATLAB (The Math-
Works Inc., 2024) and used for extracting their QSMs. 
They consist of cylinders, including their IDs, the coor-
dinates of their starting points, axis directions, length, 
and radius. They also contain the IDs about which branch 
they belong to, the hierarchical order of this branch, their 
sequences in this branch, and ID pointers about their 
parent cylinders and child cylinders. Figure 1 shows an 
example tree from TreeML-Data in two data formats: point 
cloud (left) and QSM data (right). The QSM data was 

analyzed to extract detailed information on tree structure, 
branch biomass, and woody volume.

For this study, we focus on the ten most frequently 
occurring species from the TreeML-Data dataset. These 
are common species in European cities with a temper-
ate climate (Weller 2021). The species are: Aesculus hip-
pocastanum, Acer platanoides, Acer pseudoplatanus, 
Carpinus betulus, Corylus colurna, Fraxinus excelsior, 
Platanus x acerifolia, Populus nigra var. ‘Italica,’ Robinia 
pseudoacacia, and Tilia cordata. In total, our analysis con-
siders 3,283 trees in public open spaces such as streets and 
squares. An overview of the key characteristics of these 
ten tree species and the structure of the dataset is indicated 
in Table 1.

Data preprocessing

Separating branch and stem

Based on the presented QSM data, we retrieved the height 
to the crown (hcb) base as follows. Firstly, we selected all 
branches whose hierarchical orders are larger than 0, exclud-
ing the tree stem. Then, the lowest height of their branch 
start was taken as the height to the crown base (see “hcb” 
in Fig. 2). All the cylinders that started above the hcb were 
labelled as branches, while the cylinders below this height 
were recognized as the stem (see green and red in Fig. 1 
right). Enquist et al. (1998) or Niklas and Enquist (2001) 
define the stem as stretched from the ground to the highest 
tip of a tree. However, since such a stretched stem is not 
clearly recognizable for all tree species, we have favored the 
above approach. With our defined category of the branch 
and stem, we summed up their cylinder volumes by Eq. (1), 
where r and l are the radius and length of the labelled cylin-
ders of branches or the stem, respectively.

Branch volume to biomass

The total woody volume of branches and the stem computed 
from the previous step was converted to biomass by multi-
plying the volumes by the corresponding wood density val-
ues using Eq. (2). This equation is applied to both branch 
biomass and stem biomass calculations.

With B: biomass [kg C], V: volume [m3] and ρspecies: 
wood density [m3 kg−3] of the tree species (see Table 2), 

(1)V =

n
∑

i=1

�r2
i
⋅ li

(2)B = V ∗ �species ∗ carbon fraction
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and carbon fraction is 0.5 (Cánovas et al. 2021; Matthews 
1993). To estimate branch biomass for the selected tree spe-
cies, wood density estimates were gathered from multiple 
studies and applied to individual tree volume measurements 
(see Table 2). The combination of Tables 1 and 2 shows 
diversity in structural and ecological functions of the tree 
samples within the study area. For instance, P. nigra ‘Italica’ 

exhibited the highest average height (24.0 m) and crown 
diameter variability, despite having one of the lower wood 
densities (450 kg m−3). C. betulus stood out with the highest 
wood density (750 kg m−3) but displayed relatively smaller 
dimensions in terms of dbh and height. A. hippocastanum, 
with a wood density of 525 kg m−3. P. x acerifolia is notable 
for its maximum height of 26.1 m.

Fig. 1   A sample tree in TreeML-Data in different data formats. Left is the point cloud used for extracting structural measurements. The right 
image is a visualization of the QSM data, which is divided into the stem and the crown by the height of the starting point of the lowest branch

Table 1   Mean (minimum/
maximum) characteristics of 
the different tree species in the 
TreeML-Data

Species Common name n dbh [m] Height [m] Crown diameter [m]

A. hippocastanum Horse chestnut 256 0.45
(0.06/0.93)

14.9
(4.8/22.2)

10.5
(1.6/18.9)

A. platanoides Norway maple 716 0.33
(0.07/0.89)

13.5
(5.3/23.4)

9.1
(2.3/21.8)

A. pseudoplatanus Sycamore maple 29 0.37
(0.1/0.8)

14.3
(6.7/21.9)

9.4
(2.7/16.4)

C. betulus Hornbeam 31 0.24
(0.08/0.45)

11.8
(6.2/18.0)

7.4
(2.4/14.3)

C. colurna Turkish hazel 77 0.23
(0.08/0.39)

10.5
(5.6/15)

6.6
(2.6/9.9)

F. excelsior Common ash 79 0.34
(0.065/0.84

13.6
(5.5/21)

8.8
(1.9/14.4)

P. x acerifolia London plane 509 0.41
(0.08/0.76)

18.3
(7.9/26.1)

13.4
(4.0/22.5)

P. nigra’Italica’ Lombardy poplar 275 0.46
(0.08/0.95)

24.0
(8.08/31.9

4.2
(0.1/8.03)

R. pseudoacacia Black locust 495 0.33
(0.07/0.87)

12.9
(3.9/22.5)

9.1
(2.3/21.0)

T. cordata Small leaved lime 816 0.35
(0.06/0.77)

15.2
(5.2/27.7)

9.9
(2.5/17.1)



Trees           (2025) 39:57 	 Page 5 of 16     57 

Data cleaning

TreeML-Data used point cloud data to generate the Quan-
titative Structure Models (QSM) of each tree. However, 
acquiring the point cloud data by TLS is not immune to 
errors, which can arise from various factors such as noise, 
instable surfaces, or invalid objects in reflections. These 
errors can propagate into QSM, leading to inaccuracies in 
key measurements such as dbh, tree height, or crown diam-
eter. As a result, the final dataset can include outliers and 
anomalies that, if left unaddressed, could significantly affect 
the integrity of the analysis.

To prepare a cleaned dataset for analysis, we conducted 
a thorough data-cleaning process, which is a crucial step to 
ensure the quality and reliability of the results. Data clean-
ing is essential because it helps to eliminate inaccuracies, 
inconsistencies, and irrelevant information that could distort 
the findings. In our case, outliers in measurements such as 
dbh or crown length (see “cl” in Fig. 2) needed to be identi-
fied and corrected or removed. For instance, trees with a 
dbh exceeding 0.8 m were excluded, as larger trees tend to 
introduce greater uncertainties and errors in TLS measure-
ments, as noted by Calders et al. (2015). These larger trees 
are prone to measurement inaccuracies due to the limitations 
of the QSM model in capturing the full complexity of their 
structure.

Allometry equations

Allometry is used to analyze and predict the relationship 
between a component of tree biomass (root, stem, branch 
or foliage) from readily measurable tree dimensions (for 
e.g., dbh or tree height). Allometric relationships are math-
ematically expressed through allometric equations, and the 
approach typically involves logarithmically transforming 
the size variables and then applying regression analysis to 
the transformed data (Pretzsch 2010). From this, we esti-
mated allometric factors and exponents. In this study, for 
each species, the relationship between several tree structural 
parameters and branch biomass were evaluated. The exam-
ined relationships were between branch biomass and various 
tree dimensions, including dbh, height (h), crown projection 
area (cpa), and crown diameter (cd). As cpa and cd were 
highly correlated, we included only cd for further analysis. 
In the first step, graphical exploration through scatter plots 
yielded visual relations between the variables and gave an 
idea of the model to be fitted (for e.g., linear vs. log mod-
els). Then, species-specific branch biomass allometry was 
developed using power equations in two main categories: 
First, single effect models, which analyzed the relation of 
dbh (Eq. 3), h (Eq. 4), or cd (Eq. 5) as single variables with 
the branch biomass (BB). Second, double effect models, in 
which two variables were paired for the analysis: namely 
dbh and h (Eq. 6), h and cd (Eq. 7), and dbh and cd (Eq. 8). 
The models were then further checked to meet the meet 
the requirements of heteroskedasticity (Picard et al. 2012). 
Ordinary least squares (OLS) regressions were used on the 
log-transformed variables across all branch biomass equa-
tions to determine the scaling coefficient and the intercept, 
in the forms:

(3)ln
(

BBi

)

= �0 + �i ∗ ln (dbh) + �i

(4)ln
(

BBi

)

= �0 + �i ∗ ln (h) + �i

Fig. 2   Visualization of variables used in this study for quantifying 
tree structure and crown morphology. dbh stem diameter at height 
1.3  m, h tree height, hbc height to crown base, cl crown length, cr 
crown radius, cd crown diameter, cpa crown projection area

Table 2   Wood density of tree species (based on Rötzer et  al. 2019, 
derived from Cienciala et al. 2005; McPherson et al. 2016; Merganič 
et al. 2017)

Species Common name Wood 
density [kg 
m−3]

A. hippocastanum Horse chestnut 525
A. platanoides Norway maple 565
A. pseudoplatanus Sycamore maple 547
C. betulus European hornbeam 750
C. colurna Turkish hazel 615
F. excelsior Common ash 610
P. x acerifolia London plane 548
P. nigra ‘Italica’ Lombardy poplar 450
R. pseudoacacia Black locust 691
T. cordata Small-leaved lime 456
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where BB = branch biomass, β0 = intercept of the regres-
sion, βi1 and βi2 are the slopes of the regression and εi is 
the residual error. Regression models employing logarith-
mic transformations are known to produce biased biomass 
estimates (Montagu et al. 2005). To address this issue, we 
implemented a bias correction method when back-transform-
ing our linear models. We calculated a correction factor (CF) 
using the mean square error (MSE) which was calculated by 
the equation (Baskerville 1972):

where MSE is the standard error of residuals obtained from 
the regression procedure. This CF is then multiplied to the 
estimates from the regression equations, yielding the final 
estimates for branch biomass. The selection of the best 
model for each species was based on the Akaike information 
criterion (AIC), with a lower AIC indicating a better model 
fit. We complemented AIC along with additional metrics, 
including root mean square error (RMSE) to quantify pre-
diction accuracy, and the coefficient of determination (R2) to 
assess the proportion of variance explained by each model. 
To ensure the robustness of our model selection, we also 
evaluated model assumptions. The normality of residuals 
was assessed using visual inspection (Q–Q plots). Homosce-
dasticity was examined through residual plots against fitted 
values and predictor variables.

Comparison of allometric estimates 
with established models

Allometric models developed from our TLS data were 
directly compared to existing models from the literature. A 
tree-level comparison was used to assess the performance of 
our branch biomass allometric models compared to existing 
equations from literature. Given the scarcity of urban-spe-
cific branch biomass estimates and models, we could only 
use the estimates derived from forest trees and identified 
comparable models for five (A. pseudoplatanus, C. betulus, 
F. excelsior, R. pseudoacacia, T. cordata) of our ten studied 
species. We compared the branch biomass estimates from 
Forrester et al. (2017) for A. pseudoplatanus, C. betulus, F. 
excelsior, R. pseudoacacia and T.cordata from Čihák et al. 
(2014). Absolute and relative RMSE were used to evaluate 

(5)ln
(

BBi

)

= �0 + �i ∗ ln (cd) + �i

(6)ln
(

BBi

)

= �0 + �i1 ∗ ln (dbh) + �i2 ∗ ln (h) + �i

(7)ln
(

BBi

)

= �0 + �i1 ∗ ln (h) + �i2 ∗ ln (cd) + �i

(8)ln
(

BBi

)

= �0 + �i1 ∗ ln (dbh) + �i2 ∗ ln (cd) + �i

(9)CF = exp
(

MSE2∕2
)

all the models. Bias, which would account for systematic 
over- or under-estimation, was calculated as through Eq. (10) 
as follows:

where yi is the ith estimate of branch biomass for an indi-
vidual tree. The reference studies and their corresponding 
values are detailed in Supplementary Table S2. All analyses 
were carried out using functions and packages in the statisti-
cal software R (R Core Team 2024).

Results

Branch and total biomass distribution across tree 
species

To answer the first research question, we first calculated the 
total and branch biomass across the ten different species 
(Table 3). We found significant variations across the tree 
species. Here, the wood density values represent whole tree 
density rather than specific tree components (stem density 
or branch density). In terms of total biomass, there was a 
wide variation both between and within species (i.e., tree 
size). P. x acerifolia with a mean dbh of 0.41 m exhibited 
the highest mean per-individual aboveground-tree biomass 
(1496.4 kg C), while C. colurna with a mean dbh of 0.23 m 
had the lowest (550.9 kg C). Branch biomass showed a 
similar trend of variation. P. nigra ‘Italica’ had the highest 
mean branch biomass (164.5 kg C), closely followed by P. 
x acerifolia (154.9 kg C) and A. hippocastanum (153.1 kg 
C). In contrast, C. betulus showed the lowest mean branch 
biomass (32.2 kg C). The last column of Table 3 represents 
percentage of branch biomass relative to total biomass. P. 
nigra ‘Italica’ had the highest share (17.9%), followed by F. 
excelsior (15.7%) and A. hippocastanum (12.3%). On the 
other hand, C. betulus had the lowest branch share at 3.4%, 
with A. pseudoplatanus and T. cordata also showed rela-
tively lower shares at 8.8% and 7.1%, respectively.

Species‑specific branch biomass predictions 
depending on tree structural dimensions

As the second objective of this study, we established various 
models to find the allometry relations between tree branch 
biomass and tree structural dimensions. Larger trees tended 
to have higher branch biomass, but the degree of variabil-
ity also increased with tree size for most species (Fig. 3). 
Figure 3a depicts the relationship between branch biomass 
and dbh: P. nigra ‘Italica’ showed the strongest positive 
correlation (r = 0.91), followed by C. colurna (r = 0.90), A. 

(10)Bias =

∑n

i=1

�

yi − y
�

n
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hippocastanum (r = 0.82), A. platanoides (r = 0.77), and P. x 
acerifolia (r = 0.77). The weakest, yet still significant, corre-
lation was observed in F. excelsior (r = 0.69). Figure 3b pre-
sents the relationship between branch biomass and height, 
in which most species fell within the range of r = 0.70–0.76, 
indicating a consistent strong correlation between height 
and branch biomass. Similar to dbh, P. nigra ‘Italica’ 
showed the strongest positive correlation (r = 0.81) with 
height. Although there was a significant positive correla-
tion between crown diameter and branch biomass, they were 
generally lower than those for corresponding dbh and height 
(Fig. 3(c)). For more detailed model results see Table S2 in 
the supplementary sections.

To enable a standardized comparison of branch biomass 
across our ten tree species, we analyzed the data within a 
consistent height range (Fig. 4a) and branch biomass alloca-
tion relative to the dbh (Fig. 4b). The result revealed signifi-
cant differences in branch biomass among species at stand-
ardized height (F(9, 587) = 24.41, p < 0.001) and relative to 
per cm dbh (F(9, 3254) = 48.45, p < 0.001). The mean height 
of the dataset with a tolerance level of 15.4 m ± 1.0 was 
used to assess these differences. R. pseudoacacia showed 
the highest branch biomass (mean ± SE = 175.3 ± 7.8 kg 
C), significantly higher than most other species except for 
F. excelsior (155.8 ± 14.1 kg C) and A. hippocastanum 
(mean = 154.9 ± 9.5 kg C). In contrast, P. nigra ‘Italica’ 
(32.5 ± 4.9 kg C) displayed the lowest branch biomass at 
the standardized height, significantly lower than all other 
species except for A. pseudoplatanus (44.8 ± 18.1 kg C). 
This disparity represents an approximately 80% difference 
in branch biomass between the highest and lowest values 
observed among the species studied. Standardizing branch 
biomass by per cm of dbh demonstrated that P. acerifolia 
had the highest branch biomass per dbh (3.62 ± 0.11 kg C/
cm), significantly higher than most species except R. pseu-
doacacia (3.41 ± 0.09 kg C/cm). C. betulus (1.40 ± 0.05 kg 
C/cm) and P. nigra 'Italica' (1.49 ± 0.08 kg C/cm) had the 
lowest values, significantly lower than all species except C. 

colurna (1.57 ± 0.13 kg C/cm). This indicates a 61% differ-
ence in branch biomass allocation per unit trunk diameter 
between the highest and lowest values.

Species‑specific branch biomass allometric 
equations

To address the second research question, we developed 
species-specific allometric equations for estimating branch 
biomass. Table 4 shows all allometry equations for the 
global models incorporating Eqs. (3)–(8) for all ten species 
together. Results showed the best-predicted model included 
both dbh and height as predictors. All species-specific mod-
els are shown in supplementary Table S2. We further ran 
the same model for each tree species, and we found similar 
results to the global models, for most of the species (see 
Table 5). The best predictive model for species-specific 
branch biomass included both dbh and height as predictors, 
indicated by low AIC and high R2 values. The exceptions 
were A. pseudoplatanus and C. colurna, where crown diam-
eter and dbh model were found to be the best fit. When using 
a single predictor variable, dbh provided the most reliable 
estimates compared to height and crown diameter for all the 
tree species.

Discussion

In this study, we could successfully use TLS data to iden-
tify key tree structural dimensions such as dbh, h, cd. Using 
these detailed structural measurements, we were able to cal-
culate branch biomass for our selected tree species. Despite 
our research focusing on allometric equations for branch 
biomass, it is also noticed that the stem biomass constituted 
the majority of total aboveground tree biomass, accounting 
for approximately 86.2% on average across all species and 
dbh classes (see Supplementary Fig. 1). Conversely, branch 
biomass represented an average of 13.8% of the aboveground 

Table 3   Calculated total 
and branch biomass 
(mean ± standard error) for tree 
species

Tree species Wood density 
[kg m−3]

Total biomass [kg C] Branch biomass [kg C] Branch/total 
biomass [%]

A. hippocastanum 525 1241.8 ± 50.9 153.1 ± 6.8 12.3 ± 1.05
A. platanoides 565 879.5 ± 26.6 98.3 ± 3.1 11.2 ± 0.69
A. pseudoplatanus 547 957.2 ± 130.4 84.5 ± 13.1 8.8 ± 2.62
C. betulus 750 945.2 ± 110.8 32.2 ± 3.8 3.4 ± 0.81
C. colurna 615 550.9 ± 43.3 39.7 ± 3.0 7.2 ± 1.12
F. excelsior 610 727.6 ± 52.7 114.3 ± 9.8 15.7 ± 2.50
P. x acerifolia 548 1496.4 ± 36.7 154.9 ± 3.1 10.4 ± 0.46
P. nigra ‘Italica’ 450 921 ± 32.1 164.5 ± 3.2 17.9 ± 0.97
R. pseudoacacia 691 1253.3 ± 43.9 125.6 ± 4.2 10.0 ± 0.69
T. cordata 456 1313.5 ± 26.9 93.1 ± 1.9 7.1 ± 0.29
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tree biomass (Figure S1). Our results highlight that branch 
biomass varied considerably across these most common 
urban tree species and was strongly affected by the struc-
tural dimensions.

Many studies have developed allometric equations 
to estimate branch biomass in natural forests (e.g. Vej-
pustková et al. 2015; Weiskittel et al. 2015; Zianis et al. 
2005). Although some studies have developed similar 
equations for urban forests (e.g. Vaz Monteiro et al. 2016; 

Fig. 3   Scatter plots depicting the dependency of the branch biomass to the diameter at breast height (dbh) in panel a, to the height in panel b, 
and to the crown diameter in panel c for ten tree species. “r” indicates the Pearson correlation coefficient
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Yang et al. 2022), there are only a few studies such as 
Barbeito et al. (2017), Burt et al. (2021), Calders et al. 
(2015), Gonzalez De Tanago et al. (2018), Kükenbrink 
et  al. (2021) and Momo Takoudjou et  al. (2018) who 
used TLS data for deriving the branch biomass. Recent 

research, for instance Demol et al. (2022), highlighted the 
potential of TLS to capture detailed 3D structural data 
that enhanced the accuracy of biomass predictions. Our 
study advances this field by applying TLS and QSM to 
develop species-specific allometric equations for urban 

Fig. 4   Branch biomass across 
different tree species at a 
standardized height range 
(mean height of the dataset 
(15.4 m ± 1.0 m)) and b branch 
biomass per unit of dbh. The 
dot indicates the mean value, 
and the whiskers indicate the 
corresponding standard error. 
The letters on top of each error 
bar represent the result of the 
one-way ANOVA followed 
by post-hoc tests to assess the 
statistical differences among 
species. Means not sharing any 
letter are significantly different 
by the Tukey test at 5% level 
of significance. Species are 
arranged in descending order of 
mean values for each standardi-
zation method

Table 4   Allometric results for 
all the trees species for branch 
biomass

Here CF is correction factor, AIC is Akaike Information Criterion

Model β₀ β₁i β₂i CF AIC R2 P value

Equation (3) − 2.510 1.970 – 1.10 3999.5 0.77 < 0.001
Equation (4) − 1.825 2.323 – 1.19 5911.4 0.59 < 0.001
Equation (5) 1.678 1.263 – 1.33 7508.5 0.34 < 0.001
Equation (6) − 2.992 1.564 0.71 1.09 3646.5 0.80 < 0.001
Equation (7) − 2.508 1.945 0.78 1.13 4799.5 0.71 < 0.001
Equation (8) − 2.502 1.857 0.18 1.10 3936.0 0.78 < 0.001
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trees. We developed various allometric models, and the 
results show heterogeneity among species related to their 
crown architecture and growth patterns. The following 
sections discuss the findings, focusing on how different 
structural parameters, such as dbh, h, and cd, interact to 
affect branch biomass across diverse urban tree species.

Branch biomass estimation depending on tree 
structure

The relationships between branch biomass and tree age are 
very valuable information, especially for planners and prac-
titioners. However, the age of trees is difficult to determine. 
On the other hand, close relationships exist between tree age 
and dbh and tree height (Franceschi et al. 2022; Rötzer et al. 
2021 or Yazdi et al. 2025). Using these equations our results 
can easily be converted.

Branch biomass and dbh

Our study confirmed the strong relationship between branch 
biomass and dbh, which emerged as the most significant pre-
dictor of tree branch biomass across the species studied. This 
finding is consistent with the work of Chave et al. (2014), 
who highlighted dbh as a critical parameter in allometric 
models due to its direct correlation with tree size and its 
role in predicting AGB. The positive correlation observed 
between dbh and branch biomass in species such as P. nigra 
‘Italica’ (r = 0.91) and C. colurna (r = 0.90) supports the 
declaration by Forrester et al. (2017) that dbh is a reliable 
indicator of biomass across diverse species. Additionally, 
general allometries as proposed by Enquist et al. (1998, 
1999), Niklas and Enquist (2001), Pretzsch (2009) and 
Weiner (2004) further support the use of dbh (tree size) as a 
central variable in predicting tree biomass, given its strong 
association with overall tree structure and resource alloca-
tion patterns. Other seven species such as A. hippocastanum 

and T. cordata also showed significant correlations with 
dbh, with correlation coefficients of r = 0.82 and r = 0.79, 
respectively. However, variations in species-specific growth 
forms, such as those seen for F. excelsior exhibited a moder-
ate correlation between dbh and branch biomass (r = 0.69), 
indicating that factors such as branching architecture and 
wood density may also play significant roles in determining 
biomass distribution.

Branch biomass and height

Our study also identified tree height as a significant fac-
tor influencing branch biomass, with taller trees generally 
exhibiting more extensive and complex branching systems. 
Studies such as those by Burt et al. (2019) have similarly 
emphasized the role of height in biomass estimations, not-
ing that taller trees can sustain larger branch systems due 
to enhanced resource acquisition capabilities. Our results 
show that species like P. nigra ‘Italica’ had the strongest 
correlations between height and branch biomass, with cor-
relation coefficients of r = 0.81. Despite the strong correla-
tion between height and branch biomass for all ten studied 
tree species, the degree of effect varied among species. For 
instance, A. platanoides, C. colurna, C. betulus, F. excel-
sior and R. pseudoacacia showed a significant correlation 
between height and branch biomass (r = 0.7). While A. 
hippocastanum, A. pseudoplatanus, P. x acerifolia and T. 
cordata exhibited a slightly lower correlation coefficient 
(r = 0.6), highlighting that other factors like branching pat-
terns and crown architecture may also play significant roles 
in biomass distribution for these species. Additionally, the 
analysis revealed that species with high wood density, such 
as R. pseudoacacia (wood density = 691 kg/m3), demon-
strated robust branch biomass despite moderate height, indi-
cating that wood density can modulate the impact of height 
on biomass allocation.

Table 5   Species-specific 
best fit allometric models for 
predicting branch biomass and 
species-specific intercepts and 
coefficients

All models were statistically significant (p < 0.001). Here CF is correction factor, AIC is Akaike Informa-
tion Criterion

Species Model β₀ β₁i β₂i CF AIC R2

A. hippocastanum Equation (6) − 3.423 1.763 0.581 1.056 159.98 0.887
A. pseudoplatanus Equation (8) − 1.892 1.304 0.630 1.256 62.27 0.699
C. betulus Equation (6) − 1.316 0.629 1.119 1.046 18.09 0.772
C. colurna Equation (8) − 3.084 1.709 0.661 1.035 16.39 0.900
F. excelsior Equation (6) − 3.569 1.505 1.088 1.084 82.99 0.865
P. x acerifolia Equation (6) − 3.979 1.231 1.496 1.053 288.49 0.694
P. nigra ‘Italica’ Equation (6) − 3.900 1.488 1.002 1.027 19.04 0.938
R. pseudoacacia Equation (6) − 3.767 1.299 1.490 1.119 666.73 0.826
T. cordata Equation (6) − 3.777 1.564 0.950 1.070 686.92 0.804
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Branch biomass and crown diameter

While the correlation between crown diameter and branch 
biomass was positive, it was generally weaker than those 
observed with dbh and height. This finding is consistent with 
prior research, such as Picard et al. (2012), that suggested 
that crown dimensions alone may not fully capture the vari-
ability in biomass allocation due to the diverse crown shapes 
and branching patterns among species. However, crown 
diameter remains a valuable metric when combined with 
other variables, as it provides insights into the tree’s struc-
tural characteristics and potential leaf area, which are crucial 
for ecological and physiological functions. Our results indi-
cated that all the ten tree species have a moderate correlation 
between crown diameter and branch biomass, with correla-
tion coefficients ranging between r = 0.7 (A. hippocastanum, 
A. pseudoplatanus, C. betulus and C. colurna) and r = 0.58 
(F. excelsior). This may be attributed to the variability in 
crown architecture and branching patterns, where some 
species allocate more biomass to structural support rather 
than expanding their canopy area. These findings align with 
the observations by Čihák et al. (2014) and Forrester et al. 
(2017), who noted that species-specific growth forms and 
ecological strategies significantly influence the relationship 
between crown dimensions and biomass.

The variable correlation between crown diameter and 
branch biomass suggests that height, crown shape, and dbh 
could be added to the models to make them more accurate. 
The importance of crown shape in biomass distribution has 
been noted by Franceschi et al. (2022), and including it as a 
parameter might provide a more accurate representation of 
tree structure and biomass distribution.

Branch biomass and combined variables

Models incorporating combinations of structural variables, 
such as dbh and height or height and crown diameter, gen-
erally provided more accurate predictions of branch bio-
mass than single-variable models. This combined approach 
accounts for the interactive effects of multiple dimensions on 
biomass allocation, enhancing model precision and reducing 
prediction errors. For example, the best predictive models 
for most species included both dbh and height, indicating 
the value of integrating these variables in allometric equa-
tions (Table 5).

Our analysis demonstrated that the use of combined vari-
ables significantly improved the accuracy of biomass esti-
mates across several species. For instance, the model incor-
porating both dbh and height for A. hippocastanum resulted 
in a higher coefficient of determination (R2 = 0.88) compared 
to models using dbh (R2 = 0.87) or height (R2 = 0.68) alone. 
Similarly, for P. nigra ‘Italica’, models using dbh (R2 = 92) 
and height (R2 = 0.84) showed improved prediction accuracy 

(R2 = 0.93) compared to single variable models. The advan-
tage of combined variable models supports findings by For-
rester et al. (2017), who demonstrated that multi-variable 
models are more effective in capturing the complexity of 
biomass distribution.

Comparison with established models

As the last objective of this study, we compared our allom-
etry results with previously established models (Čihák et al. 
2014; Forrester et al. 2017). It's important to note that in 
our study, we did not distinguish between bark and wood 
when estimating the branch biomass. While wood and bark 
are known to have different densities, we relied specifically 
on wood density values from the literature for our calcula-
tions, as these were more readily available and reliable. Our 
results showed that the species-specific allometric equations 
developed for urban trees in this study revealed slight dif-
ferences from those reported in earlier studies for five of the 
examined species (Fig. 5). It is important to note that our 
comparisons were with branch biomass allometric models of 
forest trees, which may not fully represent the varied growth 
conditions in urban environments. Our allometric equations 
tended to underestimate branch biomass in four of the five 
species when compared to literature-based equations, as evi-
denced by the negative bias values. Only T. cordata devi-
ated from this pattern, showing a slight overestimation. The 
observed differences could be attributed to several factors. 
Urban trees often experience different growing conditions, 
including soil compaction, restricted root space, and altered 
light conditions, which may affect their biomass allocation 
patterns. While the R2 values indicate a good fit for our mod-
els (ranging from 0.84 to 0.96), differences in sample size 
and dbh range between our study and the literature models 
could contribute to the discrepancies. Furthermore, the vary-
ing degrees of difference across species reflect species-spe-
cific responses to urban environments. The most substantial 
difference observed was for A. pseudoplatanus, where our 
equations differed by approximately 36% from previously 
published literature. F. excelsior also showed differences, 
with relative differences of 21.9% and 12.4%, respectively. 
R. pseudoacacia and C. betulus, exhibited more modest dif-
ferences, each with a relative difference of approximately 
8.5% from literature-based equations. Our allometric equa-
tions for T. cordata showed almost similar branch biomass 
estimations (relative difference ~ 1%) when compared with 
equations from the literature.

Novelty of the approach

Our approach of using TLS data combined with QSM meth-
ods to estimate the branch biomass of urban trees bears nov-
elty and provides several advantages. The high-resolution 
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3D data generated by TLS allows for the precise measure-
ment of complex branching structures typical of urban trees, 
overcoming some limitations of traditional methods that rely 
on less detailed measurements. This method aligns with 
advancements in remote sensing technologies highlighted by 
Stovall et al. (2018) and Disney et al. (2018), offering a non-
invasive and efficient way to estimate biomass. Furthermore, 
the use of QSM enables detailed structural modeling of indi-
vidual branches, capturing variations in branch length, diam-
eter, and volume, which are critical for accurate biomass 
estimation. Despite some limitations in precision for smaller 
branches, as noted by Bornand et al. (2023) and Demol et al. 
(2022), QSM provides a valuable tool for advancing urban 
forestry research and informing management practices.

Conclusion

Our study successfully developed species-specific allometric 
equations using TLS data, offering a non-destructive method 
for accurate branch biomass estimation in urban environ-
ments. Our findings reveal significant species-specific and 
tree dimension-specific differences in biomass allocation. 

While these findings underscore the need for tailored models 
in urban forestry, we acknowledge certain methodological 
limitations. The accuracy of QSM extraction is contingent 
on high-quality point clouds, which were challenging to 
obtain for fine, distant branches. Whilst earlier research has 
indicated the possibility of overestimation in thin twig vol-
umes with a diameter of less than 50 mm (Bornand et al. 
2023; Demol et al. 2022), this is anticipated to exert a neg-
ligible influence on the overall crown biomass estimates 
derived from the majority of thicker branches.

A primary limitation lies in our validation methodology. 
Unlike studies utilizing destructive sampling, we lacked 
direct biomass measurements from urban trees. Conse-
quently, we relied on literature-based comparisons, which 
may not perfectly reflect our specific urban conditions and 
species. The use of generalized allometric equations and 
wood density values derived from forest trees in literature 
may introduce some discrepancies. However, it is important 
to note that allometric equations reflect not only statistical 
relationships but also functional and mechanistic linkages 
between plant organs (e.g., hydraulics, mechanics). It is evi-
dent that there is no strict differentiation in the allometries 
between urban trees and forest trees; they should rather be 

Fig. 5   Branch biomass in dependence on dbh derived allometric equations based on TreeML compared to literature sources (Čihák et al. 2014; 
Forrester et al. 2017))
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seen as a continuum, as solitary trees also grow in forests. 
For example, if competition between trees were set to zero, 
the allometries of urban and forest trees would certainly con-
verge. However, other site conditions such as soil properties, 
mycorrhizae, radiation and/or wind conditions also have a 
strong impact on biomass growth and dimensional changes, 
thus altering the allometry of urban and forest trees in dif-
ferent ways.

To advance this research, we recommend expanding the 
study to include a broader range of species and urban envi-
ronmental conditions. Additionally, focusing on urban tree 
stock quantification is essential, as urban forests significantly 
contribute to ecosystem services such as carbon sequestra-
tion. More precise biomass data will refine models, sup-
porting better urban forest management and maximizing the 
environmental and climate benefits of urban green spaces.
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