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ARTICLE INFO ABSTRACT

Keywords: The competition for limited urban spaces due to the growing demand for both living space and green areas
Multi criteria decision making causes conflicts in urban development. This paper aims to provide urban planners with a systematic multi-
Multi-objective optimization criteria decision making process and a supporting tool-chain. The process uses multi-objective optimization

Urban simulation

(MOO) to quantify trade-offs, allowing planners to gain a broad perspective on optimal solutions.
Pareto front

The generic process builds an urban simulation model, applies MOO, explores the results in terms of multi-
Outdoor thermal comfort o N o X .
Life cycle assessment criteria trade-offs, and guides the decision making of urban planners. To enable this process, we present a
Urban Trade-off tool-chain for applying a Gaussian Process Regression based MOO algorithm to a computationally expensive
Hyper space exploration urban simulation model. The tool-chain allows to identify Pareto-optimal solutions and their properties with
reasonable computational effort. A case study model is set up in the Grasshopper environment and couples
simulation components for outdoor thermal comfort and Life Cycle Assessment. It allows to identify multi-
objective trade-offs for a high-dimensional space of urban configuration degrees of freedom such as outdoor
vegetation, photovoltaics, and building characteristics. We compare the workflow results to other MOO
algorithms and show how it can support decision making in urban planning at early design phases.

In our case study, the tool chain was able to investigate the multi dimensional space of urban configura-
tions. It systematically identified Pareto-optimal solutions therein and reduced the number of model evaluations
significantly. The case study results showcase the trade-off between lifecycle-based global warming potential
(GWP) and outdoor thermal comfort. We identified the number of trees and the coverage of the east and west
facades with photovoltaics as the most important parameters.

The proposed process proves to be a powerful multi-criteria decision support tool for urban planners.
It allows to identify and quantify the Pareto Front of competing urban target trade-offs at early design
phases. Additionally, it visualizes them according to the boundary conditions of urban development. The input
configurations of the obtained Pareto-solutions serve as a base of urban planning recommendations. In our case
study, trees and photovoltaics prove to be good levers in the area of GWP optimal solutions. However, urban
planners need to carefully coordinate inputs when aiming for a specific trade-off balance. The tool-chain and
the simulation model offer further potential for investigating neighborhood typologies. Thereby, applicants can
derive scalable guidance to support the sustainable transformation of the urban environment.

1. Background and implementing resilience strategies in cities. While flagship projects
showed the feasibility of integrated approaches to these challenges,
Rapid population growth and increasing urbanization as a world- a broad implementation in urban planning has yet to be achieved.

wide megatrend have created a rising demand for urban living spaces Urban planners need to react quickly in this field of rapidly changing

[1]. The United Nations predicts that by 2050, two-thirds of the world’s requirements where our society cannot afford an unlimited number of

population will live in urban areas, putting enormous pressure on time-consuming experiments but needs feasible and optimized solutions
. . ’ . . for the sustainable transformation of the urban environment.

cities to meet future housing demands [2]. Alongside this development, Simultaneous consideration of climate change mitigation and cli-

the 1r?creasmgly not.lcea.ble consequences of.chmaFe .change anfi urban mate change adaptation and their interactions are gaining attention

heat islands have highlighted the need for intensifying refurbishment
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Fig. 1. Main steps of the generic process for multi-criteria decision support in urban planning.

as a necessary part of the urban planning process. Nevertheless, they
are sparsely integrated into this process and especially quantification
is often missing [3]. While scholars have shown examples of conflicts
that might arise from mitigation and adaptation measures [3-5], urban
planners need practical advice to develop balanced solutions. Individ-
ual cause and effect relationships are well known for both, but the
overall effect in such relationships is complex and its consideration
often based on experiences [6]. As a result, the individual assessment
of related aspects can cause misleading conclusions, as systems may be-
have other than expected from evaluating their individual components.
This is especially true for the urban fabric, where several prevailing
characteristics emerge from the dynamic relationships between single
parts [7]. Finding an optimal solution for the design of such urban
systems is a challenging task in urban planning. Traditional methods
often aim to identify a feasible solution that is optimized with respect
to single objectives. Additional aspects are considered by setting limits
that must not be exceeded or fallen short of, but decision makers expect
various possible outcomes to choose from [8]. Thus, exploring the
whole space of feasible and optimal solutions is necessary. From this,
the extent of competing objectives becomes visible and allows planners
and decision makers to balance emerging trade-offs actively.

To quantify trade-offs in urban planning, systemic approaches and
complex simulation models are necessary [9,10]. This complexity is,
among other things, due to the various scales of urban sustainability
aspects. For instance, building energy demand is determined at the
building level, whereas summer heat stress can be assessed indoors
(building level) and outdoors (neighborhood level). Several practical
simulation methods for urban planning exist and are still under devel-
opment, but they are most often computationally expensive, meaning
single evaluations are time-consuming, allowing only for a limited
number of simulation runs [11]. Furthermore, such simulation models
usually have a large number of inputs and domain-specific outputs.
Hence, the possible number of evaluations is limited and requires
optimization methods. Translating the results of such approaches into
decision support for urban planners is crucial to make the underlying
complexity of modeling and optimization accessible in practice.

In summary, the multitude of competing objectives and large deci-
sion spaces pose a great challenge to urban planners. Domain-specific
simulation models support them, but holistic decision support can
hardly be derived from such models, as they only focus on single
aspects. Therefore, an approach for the creation and multi-objective
optimization of interdisciplinary urban simulation models and the sub-
sequent derivation of multi-criteria decision support is needed. We aim
to fill this gap by proposing a generic process that shows which steps
to take and how to couple them. Fig. 1 introduces this process’s main
parts: data collection, simulation model setup, trade-off analysis, and
multi-criteria decision support.

2. State of research

First, this section explains the concept of Hyper Space Exploration,
which serves as the theoretical foundation for setting up the generic
multi-criteria decision making process. The rest of the section is struc-
tured along the main parts of the process (Fig. 1) and focuses on the
relationship between each of the parts and urban planning.

2.1. Hyper space exploration for developing multi-criteria decision support
processes

Hyper Space Exploration (HSE) is a systems engineering concept
that combines virtual prototyping with statistical learning to explore a
vast space of potential solution alternatives in complex environments.
We use it as a guiding framework to develop a process for multi-criteria
decision support in urban planning. The Hyper Space consists of the
changeable variables (Design Space), the system configuration (Use
Case), and the target variables (Target Space). HSE allows to explore
the effects of inputs and system configurations on target indicators. It
quantifies trade-offs and identifies Pareto-solutions. The methodology
involves a five-step iterative process of Design Space definition, design
of experiments, simulation, surrogate model building, and system and
surrogate model optimization. The application of the HSE methodol-
ogy takes place within a tool-chain together with a simulation model
that maps the systemic interactions. All parts need to be coupled
with the HSE environment to ensure control and monitoring of inputs
and outputs during optimization [12,13]. The generic workflow has
been successfully used in various applications, such as battery energy
storage systems [14] or decentralized energy systems [15], where it’s
capabilities and universality were demonstrated.

2.2. The urban planning process

Until the beginning of the 20th century, cities were planned based
on empirical values from different disciplines. These empirical values
were applied mostly regardless of each other, which led to competi-
tions and restrictions in single aspects. It was only then that a cross-
disciplinary discourse was integrated into urban planning to generate
long-term plans for urban development. However, the focus was pri-
marily on the plan itself, which was usually followed independently
of the context. This approach gradually gave way to process-oriented
planning, which envisioned not a strict goal but rather the inclu-
sion of context and possibilities [16]. The traditional rational urban
planning process consist of four steps: (a) situation analysis, (b) goal
establishment, (c) action identification, (d) consequence evaluation
and comparison [17]. These have been expanded to more detail in
various attempts [18]. Data collection always plays an important role
at the beginning of the traditional urban planning process and can
be related to the HSE framework as Use Case definition (a, situation
analysis), Target Space definition (b, goal establishment), and Design
Space definition (c, possible actions). In contrast to the HSE idea of
exploring the whole space of possible outcomes, the traditional urban
planning process mostly aims to develop individual solutions for the
given urban context and task. Thus, urban planning is often limited
to iterative scenario work [19], where planners try to achieve an
optimum in one aspect (e.g. floor area) while giving several constraints
(e.g. minimum number of trees). As urban development is likely to
focus on real estate aspects [20], important aspects of sustainability are
common objectives for constraint, which leads to non-optimized solu-
tions in this regard [18]. This approach is partly a result of the growing
complexity of urban planning, which makes thorough investigation of
circumstances difficult, thus leading to scenario work. The evaluation
of scenarios in this context is a weakness for several reasons. On the one
hand, decision makers cannot be sure to get a set of optimal solutions
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for their choice, as only a limited number of constrained evaluations
is made. On the other hand, there is usually only a small number of
evaluated scenarios [21]. These scenarios represent single solutions
in an unknown space of possible solutions. Thus, there is no further
information on the expected trade-offs and their influencing factors.
In consequence, some scholars argue for an update of common urban
design and planning processes in order to overcome these shortages [6].

2.3. Simulation of urban interactions

The building sector faces a multitude of interactions, which result
in numerous multi-criteria issues that should be considered in the
planning process. Interactions exist both within building systems [22]
and between buildings at the neighborhood level [23]. These indoor—
outdoor interactions have been intensively studied in research [24].
Liu et al. develop a parameterized Grasshopper model to investigate
the effects of neighborhood shading on the energy demand of build-
ings. Thereby, they show that heating and cooling loads are heavily
influenced by the urban context [25]. Loffler et al. take a similar
approach to investigate the effect of urban density on energy demand
and find a comparable effect of insulation and density on heating
demand [26]. Naboni et al. show how outdoor and building simulation
can be combined into a holistic model. They utilize existing plugins
in the Grasshopper environment to determine daylight availability,
outdoor thermal comfort, and energy demand of design variations [27].
While most of these studies focus on building-related parameters, Zheng
et al. integrate street trees into the assessment of energy efficiency and
outdoor thermal comfort. Furthermore, they emphasize the trade-off
between these two aspects [28]. However, the aforementioned studies
mainly focus on the interactive effect in terms of energy demand.
Lifecycle-based approaches are rarely found in the context of complex
urban simulation models. Another significant challenge are the exten-
sive simulation times required for outdoor comfort [29], wind [30], or
energy consumption [31]. Obviously, simulation times increase further
with parallel investigation of these aspects. In addition, such sophisti-
cated simulation models are difficult to use for decision makers, making
it necessary to derive easily communicable decision support.

2.4. Multi-objective optimization of urban simulation models

The application of multi-objective optimization (MOO) methods in
the building sector has been a growing research interest in recent
years [32]. These methods allow decision makers to identify optimal
(in mathematical terms, non-dominated or Pareto-optimal) solutions to
complex design problems by considering multiple performance criteria
simultaneously. Pareto-optimal solutions (or Pareto-points) generalize
the concept of mathematical minimum to multiple dimensions. Roughly
speaking, a Pareto-optimal solution is a solution such that no other so-
lutions are better in every component [33]. In the setup described here,
this translates to solutions where minor lifecycle-based global warming
potential (GWP) is only possible by worsened outdoor thermal comfort
or vice versa. Consequently, there is more than one Pareto-solution for
such problems. Getting a broad spectrum of possible Pareto-solutions
allows to start a discussion on the prevailing trade-offs and how to
balance them [12].

Several methods for MOO exist, but only a few are suitable for
computationally expensive urban simulation models. This limits the
applicability of MOO algorithms as optimization quality decreases with
a smaller number of evaluations [34]. Brute Force methods evaluate
all input configurations sequentially but are only appropriate for finite
or discretized parameters [35]. Gradient-based methods are sensitive
to local extremes and are therefore not suitable for nonlinear building
simulations [36]. Hence, global optimization approaches are required.
These can be divided into direct search and surrogate model-based
search. Only a few direct search algorithms are available, as they often
can only work with a limited number of inputs and mathematical

Building and Environment 254 (2024) 111360

guarantees for a global optimum are difficult to provide [37]. Model-
based algorithms, on the other hand, generate surrogate models for
the simulation to be optimized. Evolutionary algorithms and particle
swarm optimization have proven to be suitable for building optimiza-
tion in this context [34,37]. In practice, however, there are often
uncertainties in dealing with such algorithms, and computationally
intensive models are investigated with unsuitable methods and too
short optimization runtimes [38]. Wortmann compares several opti-
mization algorithms in a trade-off analysis of daylight and glare and
states that the application of model-based MOO in architecture is
highly suitable for computationally expensive architectural simulation
models [39]. Zhang et al. show how model-based MOO can be used to
achieve significant improvements in energy usage and building struc-
ture while facing a trade-off with solar availability. They also highlight
the importance of optimization approaches for decision making in early
design phases [40]. However, many MOO algorithms do not guarantee
complete coverage of the Pareto Front (PF), which is necessary for a
holistic representation of the decision space of urban planners [41].
For instance, Zhao et al. use a genetic algorithm to optimize daylight
performance and energy demand. Although, the optimization converges
to the final PF, there are still gaps in the results [42].

2.5. Multi-criteria decision support in urban planning

In the building sector, Kiss et al. demonstrate how MOO can support
decision making by balancing environmental indicators from building
operation and construction. The HypE algorithm, proposed by Bader
et al. [43], is utilized to identify competing impact categories. They
highlight the potential of such approaches to reveal the decision space
for designers [44]. Schuler et al. use linear equations to investigate
planning options and trade-offs for decision makers at both the indi-
vidual building and the urban scale. They note that detailed dynamic
simulations may require significant effort to represent a complete pic-
ture of the decision space [11]. Abdollahzadeh et al. demonstrate
the use of coupled indoor and outdoor simulations in a parametric
approach for simultaneously evaluating building energy demand and
outdoor thermal comfort. They discuss the revelation of the decision
space and the selection of the optimal design outcome. However,
increasing simulation time poses a significant challenge for a more
detailed simulation model [45]. Mukkavaara and Shadram show how
sensitivity analysis can be used to support decision making in the
context of Life Cycle Energy Analysis. They apply MOO and select
Pareto-optimal solutions based on obtained sensitivity by utilizing the
Method of Morris [46]. The use of surrogate models for deriving the
Design Space of Pareto-solutions is shown by Li et al.. They set up
a surrogate model for a single simulation tool and use this model to
optimize for the PF. By obtaining a distribution of the Design Space
parameters, they derive recommendations for the input ranges. In their
outlook they mention the integration of further aspects in order to
enforce a systemic perspective in the urban environment [47].

3. Methodology

This section describes the generic process for multi-criteria decision
support in urban planning. Alongside, we provide examples of methods
and tools that can be used to implement the process. Fig. 2 shows
the individual steps of the proposed process, which we explain in the
following.

(1) Target Space definition: The targeted objectives of urban de-
velopment are defined. These may include a variety of aspects from
the fields of ecology, economy, and society. In order to allow for the
optimization, all the defined objectives need to be quantifiable, i.e. they
need to be real numbers. Therefore, the focus is on defining the Key
Performance Indicators (KPIs) that shall be included in the following
optimization to ensure a measurable outcome of the design process.
A possible way to derive these KPIs is through public discussion and
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Fig. 2. The generic process of Urban Systems Exploration for multi-criteria decision support in urban planning with supporting methods and tool examples.

orienting the selection on the city council’s published intentions for
future development.

(2) Design Space definition: Defining possible interventions depends
on the context of the project and whether it is a new or existing
development. After defining the relevant interventions, their boundary
conditions are assigned. These conditions may include ranges for spe-
cific variables or constraints. For instance, urban density can be limited
by regulations and thus should not take a value outside a certain range.
Discussion within project groups or former experience are possible
ways to identify these. The interventions and their ranges make up the
Design Space of the project.

(3) Simulation components identification: After defining Design and
Target Space, the necessary simulation components that integrate the
interventions and evaluations must be identified. The process described
in this paper also applies to computationally expensive simulation mod-
els. Thus, users can select from a wide variety of simulation components
in their field, as this selection is not limited to fast-running simulations
like many MOO applications.

(4) Simulation components interactions: While each of the simulation
components is capable of the KPI it was selected for, this step ensures
a systemic consideration of the urban fabric. Therefore, interactions of
the single components need to be identified. In this context, we define
two kinds of interactions. On the one hand, the results of one process
may serve as input for another. On the other hand, several processes
may refer to the same input. Additionally, the influence of interactions
should be investigated, as some might only have a minor impact on the
results. Consulting literature or experts on a specific nexus can support
this step. Excluding known interactions should be done carefully, as
systemic behavior may be very different from single considerations and
thus neglect significant interactive effects.

(5) Check information exchange: As methodologies for obtaining
the identified KPIs vary in terms of model type (physical simulation,

artificial intelligence models, stochastic models), sufficient possibilities
for implementing the identified interactions in the overall model need
to be ensured. This may be done by passing on outputs from one
simulation component to another component where it serves as an
input, or by using the same inputs for several model components. If
there are components that do not share any connection with the others
or where information exchange is technically not possible, a different
simulation component needs to be found.

(6) Information exchange implementation: The implementation of in-
formation exchange often utilizes one single platform, where all identi-
fied simulation components can be connected. This may be an existing
software, such as Grasshopper [48], where several simulation plugins
operate. Another way is to develop one’s own methodology for this in-
formation exchange based on programming languages such as Python.
Finally, this step leads to an interconnected simulation model, which
can be used for the following trade-off analysis.

(7) Trade-off analysis: It is not possible to determine Pareto-points
theoretically. Hence, an algorithm is necessary. For the trade-off analy-
sis, an MOO algorithm is selected and applied to the model. This MOO
algorithm must be effective by identifying points that represent an
optimal trade-off, and efficient by using few computational resources.
After selecting an appropriate option, it needs to be coupled with
the simulation model. Some algorithms provide ready-to-use inter-
faces, whereas in some cases, users need to define their own exchange
methodology for the MOO and the simulation model. After this step, a
first impression of the general trade-offs and their properties is possible.
This may already be useful for decision making and can guide further
investigation.

(8) Results exploration: In order to allow a detailed exploration of
the resulting trade-offs, the discontinuous results from the MOO are
transferred into a continuous space using surrogate modeling. The
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simulation results and the corresponding inputs are used to train these
models. As the number of available training points limits this process,
Gaussian Process Regression (GPR) is suitable for this step. GPR is a
highly flexible modeling approach that has empirically proven to be a
good choice for regression problems with few data [47,49]. The validity
of the model training must also be ensured, as inaccurate training of the
surrogate model would cause misleading results in the next step and,
therefore, wrong conclusions regarding decision support.

(9) Parameter influence investigation: Two crucial aspects are covered
by determining the influence of the Design Space parameters. First, it
allows to reduce the number of inputs to the process in step (2). This
leads to reduced computational effort and more efficient process use.
However, it should be noted that these parameters still give valuable
information about their value ranges. Low sensitivities reveal that
changes in these variables will not lead to high uncertainties in the
results, and their value can be narrowed down to a small range. Second,
parameters with a high sensitivity are well usable as steering inputs.
Their influence and control options should be further evaluated. This
is especially useful in high dimensional Design Spaces, where only a
limited number of inputs can be visualized and discussed.

(10) Decision support derivation: In the final step, decision support is
derived from the immediate outputs of the MOO process (7) as well as
from the surrogate model (8). One possibility to make the results more
accessible is to cluster certain areas of the Pareto-optimal solutions
and show the corresponding input values. By obtaining an equally
spaced distribution of Pareto-points, density plots allow insights into
the steering of trade-offs by the selection of certain input combinations.

We propose to implement the process of Urban Systems Exploration
in urban development projects as early as possible. Although little
information is available at this point, simulation models designed for
this purpose can contribute to the early assessment of the prevailing
trade-offs. Additionally, repetitive application of the process improves
the results’ reliability when conditions become more explicit. In this
iterative process, targets and objectives may be refined, and the generic
process can be applied several times.

4. Case study description

In this study, the generic process is exemplary applied to a case
study neighborhood in Munich, Germany. We give an impression of the
trade-off between lifecycle-based GWP and outdoor thermal comfort
(Section 4.1). In Section 4.2, the KPIs for evaluating this trade-off are
identified, and a simulation model is set up as described in the process
steps (1) -(6). For the application of steps (7)—-(10), we set up a tool-
chain suitable for the MOO of urban neighborhoods. Finally, we present
the case study neighborhood for implementation in Section 4.3.

4.1. Trade-off under consideration

Urban green spaces provide various benefits, such as reducing urban
heat island effects, reducing building cooling energy demands, and
enhancing outdoor thermal comfort [50]. Additionally, urban green
infrastructure supplies several cultural ecosystem benefits, including
health, social cohesion, and local identity [51]. However, increasing
urbanization causes competition for limited space in cities, raising the
question of whether to use available areas for new buildings or green
spaces. This creates challenges for the urban planning process, such as
balancing outdoor thermal comfort with heating energy demand and
greenhouse gas emissions [52]. Considering this fact, it is crucial to
make trade-offs easily usable for strategic planning at the neighborhood
level, as co-benefits from mitigation and adaptation decrease the later
the related measures are scheduled [3]. Research has pointed out
several relevant effects when it comes to building-green interactions.
Darvish et al. showed that urban trees can have a considerable effect on
buildings’ heating and cooling energy demand [53]. Hamin and Gurran
elaborate on the competing requirements for climate change mitigation
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Table 1
Design Space for the multi-objective optimization.

Simulation parameter Unit  Input range
Tree percentage [%] [0, 100]
Tree crown diameter [m] [2, 10]
Tree height from ground [m] [6, 10]
Tree crown transparency summer [%] [10, 30]
Tree crown transparency winter [%] [45, 80]
PV roof percentage [%] [0, 100]
PV south facade percentage [%] [0, 100]
PV east—west facade percentage [%] [0, 100]
PV battery capacity [kWh] [0, 80]
Green roof soil thickness [m] [0, 0.25]
Window-to-Wall Ratio all orientations [%] [10, 50]
Window solar heat gain coefficient [-1 [0.4, 0.85]
Albedo facade [-1 [0.1, 0.7]
Street width [m] [3, 91

and adaptation. Densely built areas contribute to mitigation, whereas
open and green spaces improve adaptation [4]. However, research
rarely considers the combined effects of technological measures, such
as refurbishment, and green measures, such as tree coverage and tree
shapes [54].

4.2. Process application in a case study

4.2.1. Data and inputs

As a first step of the generic process, suitable KPIs need to be
identified (1). The goal of this case study is to investigate the trade-
off between climate change mitigation and climate change adaptation.
Therefore, we implement two main aspects into the simulation model:
climate change contribution and outdoor thermal comfort. These are
represented by the indicators lifecycle-based GWP and Universal Ther-
mal Climate Index (UTCI). In the following step, intended interventions
and their representation in the simulation model are determined (2).
The aim is to identify configurations of outdoor space and building
interventions that lead to Pareto-optimal solutions for the neighbor-
hood. Table 1 shows the considered ranges for the 14 selected model
inputs. Tree percentage represents the proportion of possible tree lo-
cations around the buildings that are occupied by trees. Photovoltaic
(PV) percentages refer to the corresponding occupied proportion of
the building surfaces. Tree crown transparency indicates the foliage
condition over the year, with low transparency representing dense
foliage. The street width between buildings is included, as wider streets
reduce the number of possible tree locations.

4.2.2. Simulation model

The simulation model developed for this study is based on the para-
metric Grasshopper environment in Rhinoceros 3D [48]. The available
plugins enable coupled workflows to evaluate our chosen KPIs. The
main parts of the simulation model considered in step (3) are:

« Outdoor thermal comfort simulation [55]

» Wind simulation with Fast-Fluid-Dynamics [56]
* Building energy simulation [57]

+ Life Cycle Assessment [58]

+ Photovoltaics simulation [59]

As several simulation cores are involved, a coupling approach
within the Grasshopper environment is necessary. However, both KPIs
are not independent but dynamically exchanging and partly based on
identical inputs. The qualitative search for interactions between the
simulation components revealed a strong connection between urban
vegetation, its potential cooling effect for urban heat islands, and
buildings’ energy demand [60,61]. To integrate this interaction, we
decided to implement another simulation component into the model,
the Urban Weather Generator [62] (4). As mentioned, the Grasshopper
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Fig. 3. Simplified representation of the information flows within the Grasshopper
model.

environment offers a ready-to-use solution to exchange information
between simulation components. By applying Python programming and
native tools, it is possible to transform data from one simulation output
into the correct format for the following components (5).

The next step (6) in the generic process covers the implementation
of information exchange in the simulation model. Fig. 3 illustrates the
simplified information flow within the simulation model. Firstly, the
geometries of the considered buildings within the neighborhood are
created, including the buildings themselves, streets, lawns, and trees
(Fig. 4). After generating the base geometry, inputs for incorporating
the Urban Heat Island (UHI) effect are extracted from this model using
the Dragonfly implementation of the Urban Weather Generator [55].
Although the model itself only covers an area of 210 x 72 m, the inputs
for the UHI simulation remain constant within the considered typology
of row housing and are thus usable for the Urban Weather Generator.
This step generates a locally adapted weather file, considering the
information on building materials and operational configurations. The
local weather file is the basis for the central building’s subsequent
energy simulation in Energy Plus [63]. This energy simulation considers
the previously specified materials and usage profiles. The neighboring
buildings represent opaque surfaces in the energy simulation, while
trees receive transparency over the year, according to their leaf state.
The resulting energy demand of the buildings is transferred to the
PV component of Climate Studio [59] as a load profile on an hourly
basis, determining the proportion of self-consumed and exported en-
ergy. Buildings and trees are considered as shading objects in the PV
simulation. Finally, the calculation of GWP over the 50-year lifecycle
is performed based on component values (for the construction phase)
and emission factors (for the operational phase). For the so-called
grey emissions (GWP from material consumption), insulation mate-
rial, changing Window-to-Wall ratio (WWR), the exchange of existing
building components, and disposal after 50 years are considered. This
is especially important for evaluating intense refurbishment scenar-
ios, such as the Passive House standard, where grey emissions may
take large shares of the total impact [64]. The resulting KPI of CO,-
equivalent per gross floor area is passed on to the data storage. Detailed
information on the applied boundary conditions for the LCA of the case
study are given in Section 4.3.

To assess outdoor heat stress, we first select a particularly heat-
intensive hour. Heat stress is not only determined by air temperature
and relative humidity but also by, e.g., radiation and local wind speed.
Thus, the UTCI is appropriate for this assessment, as it includes these
influences [65]. Due to the computationally expensive wind simulation,
evaluating numerous hours is hardly feasible. To overcome this, we
implement a pre-selection approach to identify the hour with maximum
thermal heat stress for further wind analysis. Outdoor thermal comfort
is usually determined for single positions in the model and is thus
highly susceptible to fluctuations due to local conditions. In order to
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Fig. 4. Representation of the Grasshopper model with the central building for energy
simulation and neighboring buildings with trees as context shading.

minimize the effects of locally cast shadows on outdoor heat stress
during specific hours, 15 grid points are regularly distributed within
a radius of 50m around the central building at the height of 1.2m.
Thereby, we cover the outdoor area where tree placement around the
central building may influence UTCI. Firstly, the geometrically relevant
parameters, such as sky view factor, are determined for each of the
grid points. Subsequently, we calculate Mean Radiant Temperature, and
finally, the UTCI is determined for each grid point at every daytime
hour between May and August using Ladybug Tools [55]. The results
for the grid points are then averaged, resulting in one UTCI value for
each hour. The hour with the maximum area-averaged UTCI value is
filtered and further analyzed from this set. This hour’s wind speed and
direction are extracted from the weather data. They serve as inputs for
the wind simulation, in which we use Fast-Fluid-Dynamics [56]. From
the results, we extract the local wind speed and combine it with the
other parameters from the local weather file (air temperature, radiation
temperatures, relative humidity). This leads to the final UTCI results
for each of the 15 grid points in the area. After averaging over the grid
points, we obtain the outdoor thermal comfort KPI for data storage.

Another important aspect of setting up the coupled simulation
model is the scale at which each of the involved simulation cores
operates. Energy simulation can be conducted for individual buildings
as well as for entire neighborhoods. In contrast, obtaining outdoor
thermal comfort KPIs is mostly done at the neighborhood scale. Hence,
the neighborhood scale is chosen for the entire model. Due to the
repetitive character of the central building in our case study, energy
simulation and LCA are conducted only for this building to reduce
simulation time. In this regard, all the surrounding elements (buildings,
trees) serve as shading objects. Specific inputs and boundary conditions
for the case study are presented in Section 4.3 and are summarized in
Table 2.

4.2.3. Tool chain for multi-objective optimization

The simulation model and the optimization environment are linked
via an independent control interface for data exchange. A data stor-
age holds the results for further evaluation upon completion of the
optimization process (Fig. 5).

Following the simulation model setup, the trade-off analysis in-
volves the MOO of the black-box model (7). As the simulation model is
classified as computationally expensive, only a few evaluations are pos-
sible. Therefore, we choose GPR-based Multi-Objective Optimization,
as it can effectively and efficiently identify Pareto-points in the Target
Space [75]. Starting from an initial Latin Hypercube Sampling (LHS),
this methodology combines surrogate models based on GPR for each
of the considered outputs and maximizes the Expected Hypervolume
Improvement. The approach has recently been updated to the Paref
algorithm library. Paref allows to identify Pareto-points and addition-
ally to require some properties of these points (e.g., evenly distributed,
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Table 2

Fixed inputs for the Grasshopper simulation model.
Simulation parameter Input Source
U-Values [W/m?.K] Status Quo: 1.6, 1.0, 1.0, 2.6 [66]
wall, roof, ground, window Scenario 1 (GEG): 0.24, 0.2, 0.3, 1.3 [67]1

Scenario 2 (PH): 0.15, 0.15, 0.15, 0.7 [68]

Weather data Retrieved from Meteonorm for Munich airport, 2020 [69]
Heating setpoint 20 °C [70]
Internal loads [people/m?] 0.025 [70]
Internal loads lighting [W/m?] 2 -
Occupancy schedule weekdays: 17-7 h, weekend: full day -
Infiltration [m3/s per m? facade] Scenario 1 (GEG): 0.0003, Scenario 2 (PH): 0.0001 [55]
PV efficiency [%] 22 [71]
PV battery efficiency [%] 70 -
LCA insulation material [-] eco standard [72]
Tree transparency months summer: May —October, winter: November - April -
Tree crown transparency [%] summer: 10, winter: 55 [73]
Plant height roof vegetation [m] 0.2 -
Anthropogenic heat Q; .. [W/m?] summer: 34.64, winter: 57.5 [74]
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Fig. 5. Tool-chain for coupling the optimization and the simulation environment.

located in a specific target range, being an edge point). Paref provides
ready-to-use algorithms that allow one to search explicitly after those
properties with theoretical guarantees [76,77]. Through this, Paref can
identify Pareto-solutions in certain areas of the PF with a small number
of model evaluations. Thereby, it meets our defined requirement of
efficient determination of evenly distributed Pareto-points in a complex
environment.

For the application in our case study, we generate 15 initial samples
using LHS and simulate them with the Grasshopper model. With this
initial evaluations, the first GPR models are fitted. In the first step, we
choose a configuration for searching edge points of the PF. Thereby, the
algorithm weights the two competing KPIs (lifecycle-based GWP and
average UTCI) to both extremes to identify the maximum Target Space
span. Due to the small number of samples for training the surrogate
models, uncertainty in these edge-areas of the PF is initially high.
Therefore, the Paref framework allows for multiple runs per point.
For each edge point, three iterations are permitted. The search is
terminated if the algorithm identifies a point very close to an already
evaluated solution. Once the two edge points are identified, we apply
the evenly-scanned search algorithm to reveal the rough shape of
the PF. After completing this step, the fill-gaps search algorithm is
applied. This involves calculating the normalized distances between

each consecutive pair of Pareto-points. Consequently, Paref searches
for an optimal solution between the two Pareto-points with the most
significant normalized distance. If no new Pareto-point is identified, the
algorithm attempts to find a point at the same location again, which
can lead to accumulation in some areas. Nevertheless, the identified
points contribute to improved PF representation in these regions. After
each search step, the user may decide to terminate the optimization
or change the search strategy by using another algorithm or manually
restricting the search space.

Due to the Python 3 based optimization algorithms in Paref, direct
integration into the parametric model is not feasible as Grasshopper
currently only supports IronPython 2 (version 2.7). Therefore, the data
exchange is facilitated via comma-separated values (csv) and check-
point files, with the contents of a network drive being continuously
monitored by both the simulation and the optimization environment.
Upon completion of a simulation or optimization iteration, the respec-
tive environment generates a csv file with inputs for the simulation (in
the case of the optimization environment) or results of the simulation
run (in the case of the simulation environment). Subsequently, the
corresponding checkpoint file is created. The coupled environment rec-
ognizes these files and initiates reading the inputs or outputs, thereby
starting the simulation or optimization. After the process is finished,
the previous checkpoint file is deleted, and the new csv and checkpoint
files are written, which toggles the next iteration loop. This coupling
approach has multiple benefits compared to direct integration into
Grasshopper. For instance, performing simulation and optimization on
different computers is possible. This enables the allocation of resources
to tasks according to their requirements (e.g., high CPU performance
for the optimization on one computer, high GPU performance for sim-
ulation on another computer). Additionally, it enhances the robustness
of simulations by allowing manual pausing or restarting of individual
iterations.

4.2.4. Decision support

After obtaining a discrete representation of the PF, we construct
a surrogate model from the optimization results for further analysis
(8). GPR is utilized as it is a suitable method for creating surrogate
models with few training points while also capturing uncertainties.
The GPR receives the Pareto-points obtained from the optimization
process as initial training points. Since our approach identifies many
points very close to the actual PF, we select 75 % of all available points
closest to the optimized PF as full training set. These points increase
the prediction accuracy of the model in areas where an actual Pareto-
point could not be identified. Additionally, points far away from the PF
are excluded by this procedure. These dominated points stem from the
initial LHS and are scattered over a large area. They would introduce
high uncertainty for predictions far away from the PF.

After creating the surrogate models and verifying its prediction
quality, we determine sensitivities (9). This gives a sense of the inputs
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Fig. 6. Case study area in Munich.
Source: Adapted from [78].

to focus on for subsequent evaluation. In the last step, we use linear
interpolation to derive dense and equally distributed Pareto-solutions
(10). This is necessary as we want to show the spread of inputs for
certain PF areas to give urban planners an impression of the related De-
sign Space. Non-equal distribution would cause misleading conclusions
due to accumulation in certain areas. A differential evolution algorithm
determines the corresponding input (i.e. Design Space) values for each
of the equally distributed points using the GPR surrogates. Due to the
probabilistic nature of GPR, model uncertainties in the form of standard
deviations can be investigated at each point. This allows identifying
outliers and excluding them from further analysis. The result is a
PF where each Pareto-solution is mapped into the Design Space and
planners can investigate the distribution of input parameters in certain
areas of the PF. This allows them to decide on the necessary boundary
conditions to achieve a certain trade-off balance. Additionally, they can
identify inputs with more open boundaries. These are necessary to open
up design options and thus ensure productive planning competitions.

4.3. Case study area

The case study aims to quantify the trade-offs and conflicts arising
from the simultaneous consideration of climate change adaptation
and climate change mitigation in urban planning. We use the cou-
pled indoor - outdoor simulation model combined with multi-objective
optimization to visualize trade-offs and derive recommendations for
steering design into specific trade-off areas. The proposed process is
implemented via the described tool-chain and applied to a case study
neighborhood in Munich, Germany.

The case study area is a typical massive row house development
from the 1930s, which is representative for this type of settlement [79].
Fig. 6 shows an aerial photo of the area’s boundaries with the cen-
tral building highlighted. Table 3 summarizes the information on the
central building used for energy simulation. These properties remain
unchanged in the optimization process.

For the LCA we use component data sets generated based on
the German Okobaudat database [80], version 2020-II. The life cycle
phases of construction (A1 -A3), building operation (B4, B6), and end-
of-life (C3-C4) are considered for products that are newly installed
to the building, such as additional insulation. For existing products,
exchange according to the components’ service life (B4) and end-of-life
(C3-C4) after the 50-year study period are considered. Components’
service life is set according to [81] for new and existing parts. The
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Table 3
Characteristics of the central case study building used
for energy simulation and LCA.

Characteristic Value
Building length 62 m
Building width 10.5 m
Building height 15 m
Number of floors 4 full, 1 attic
Distance to neighbors east—west 20 m
Distance to neighbors north—south 12 m

Year of construction 1930

North orientation 10°

considered building parts are: roof, ceilings, exterior walls, interior
walls, windows, and base slab.

The hourly matching of electricity demand and PV generation al-
lows detailed consideration of consumed and exported energy. The
GWP credit for exported electricity is linearly reduced to zero by the
assessment year 25. This means that from year 25 to year 50 of the
assessment, no credit is given for exported electricity, as by then, a pri-
marily regenerative energy supply is assumed in the German electricity
mix [82]. PV is modeled with an efficiency of 22 %, corresponding to
Crystalline Si Cells or Thin-film technologies [71].

Two refurbishment scenarios are examined for the area. The legal
standard (GEG, [67]) represents the base level of refurbishment, and
the Passive House (PH, [68]) an improved standard. A heat pump
(Coefficient of Performance = 3.0) is assumed as the primary heat
supply for both scenarios. Energy requirements for heating, lighting,
and hot water are included. Active cooling is not available in most
of the German building stock and is therefore not considered in this
study [83].

5. Results of case study application

We present our results first regarding the properties of the Pareto-
solutions. Second, we compare three different approaches for the MOO
in terms of PF representation. Third, the surrogate models are evaluated
for their prediction quality and the necessary number of black-box
function evaluations. Finally, steering options for the trade-off are
presented.

5.1. Properties of pareto-solutions

The results obtained from the optimization process allow for an ini-
tial evaluation of the outcomes and plausibility checks. Fig. 7 illustrates
the PF, taking into account the attributes of Tree-% and Roof-PV-%.
Direct causal relationships can be inferred from this representation.
It is evident that Tree-% is a significant control lever for positioning
on the PF. As Tree-% increases, the outdoor thermal comfort indicator
improves, i.e. UTCI lowers. In contrast, lifecycle-based GWP rises with
a higher proportion of trees as heating and lighting energy demands
increase, and positively contributing PV surfaces may become shaded.
For the design parameter of Roof-PV, mostly values above 50 % are
situated on or close to the PF, with more significant PV percentages
being required for very low GWP outcomes.

However, the points are unevenly distributed throughout the PF,
potentially leading to bias when mapping them back into the Design
Space. As described in the methodology section, especially applying
Paref’s fill-gaps search algorithm may lead to a concentration of points
in certain areas. This is the case in the steeply increasing section of the
PF around an UTCI of 29 °C (see Fig. 7).
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Fig. 8. Pareto Front obtained from Paref, NSGA-II, and Latin Hypercube Sampling.

5.2. Representation of the pareto front

To check the quality and coverage of the PF obtained from the
optimization, we simulated 100 samples generated by LHS for the GEG
scenario. MOO was performed using the NSGA-II algorithm with a
population size of 25. As described in the case study, the Paref package
with 15 initial LHS samples and a combination of the evenly-scanned
and the fill-gaps algorithms was applied. Overall, each of the three
approaches got 100 model evaluations to identify Pareto-points.

Fig. 8 shows the Target Space results, where both KPIs should
be minimized. The LHS run resulted in a majority of model evalua-
tions with a high distance to the Pareto-property. It covers a smaller
Hypervolume compared to the optimization approaches (37.17 (LHS)
compared to 44.26 (NSGA-II) and 53.92 (Paref)). This corresponds to a
16.02 % (NSGA-II) and 31.06 % (Paref) improvement by applying MOO
algorithms. Additionally, Paref identifies many points close to Pareto-
solutions, which is valuable information for the training of surrogate
models in the next steps of our methodology. Overall, the Pareto-
solutions obtained with Paref dominate the NSGA-II solutions and fulfill
our requirement for even distribution.

5.3. Necessary number of model evaluations

In the following, we evaluate the quality of the final surrogate
models with an increasing number of training points. This knowledge is
especially relevant for applying the tool-chain in other contexts where
computational resources are limited, and only a minimum number of
model evaluations should be performed. In the context of prediction
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quality, Root Mean Squared Error (RMSE) is a measure of the dif-
ferences between predicted and observed values commonly used to
evaluate the accuracy of a surrogate model. R? is a statistical measure
representing the proportion of variance for a dependent variable ex-
plained by variables in a regression model. The negative log predictive
density (NLPD) measures how well the model’s predictions match the
actual data, with lower values indicating better predictions. NLPD is
mainly used in probability modeling as performed with the GPR. Fig. 9
shows these metrics’ dependence on the size of the training dataset. We
split 20 % of the data points as a test dataset and tested ten variations
of the training data to determine the confidence intervals. With a
minimum of 40 training points, the metrics achieved convergence. This
finding is beneficial for determining the necessary model evaluations in
optimization to make the optimization process more efficient and avoid
unnecessary runs.

5.4. Deriving multi-criteria decision support

After checking their quality, the surrogate models are finally trained
for the two refurbishment scenarios (GEG, PH). Initial predictions of the
Target Space with 100,000 samples per model were generated using
LHS. Fig. 10 shows the resulting data points with the PF marked. The
results extend beyond the initially determined PF, particularly in the
edge areas. This is due to the higher uncertainties of the GPR model
in these areas. The results generally show a better performance for
the PH scenario, although overlapping areas can be achieved in both
refurbishment scenarios. This highlights the decision making options
in cases where the same results are possible in several scenarios.
Nevertheless, regarding the Pareto-solutions, the PH scenario performs
better than the GEG scenario in all cases.

A Sobol sensitivity study was performed with the PH surrogate
model to select the most influential input parameters for further anal-
ysis. This variance-based sensitivity analysis allows to investigate how
the output variance depends on the input uncertainty. The methodology
builds a total effect, which is composed of direct and interactive effects.
As we emphasized in the state of research, urban design is most often
nonlinear and, therefore, requires such an approach. The resulting
Total Sobol Indices give an indication of which inputs can be fixed
without affecting the output and, accordingly, which inputs are useful
levers [84]. The results show that, in particular, tree percentage, tree
crown diameter, and PV percentage of the east—west facades can be
used as control parameters (see Fig. 11). For clarity in the presentation
of the results, we focus on these three parameters in the following
sections. Furthermore, there are several inputs that mainly influence
one of the two targets, such as PV-Roof-%. However, this may still
indicate a relevant role for the combined trade-off investigation, as
changes in one target can lead to losing the Pareto property of single
solutions. It is important to mention that the sensitivity analysis is
conducted over the whole space of possible model outcomes and is
not limited to Pareto-optimal solutions. Therefore, there should not
be hasty decisions to exclude seemingly less sensitive parameters. Our
application of sampling over the entire Design Space in Section 5.4
(Fig. 10) showed that the surrogate models do not necessarily cover
the complete PF when only sampling is applied.

We select the PH scenario for further investigation as it outperforms
the GEG scenario. The gaps in the PF obtained from the optimization
are filled at regular intervals using linear interpolation. Consequently,
the corresponding input combinations for each point in the Design
Space are identified using the surrogate models for the two KPIs and the
differential evolution minimizer from the Sci-kit Learn package [85].
To better communicate the trade-offs on the PF, k-means clustering
is applied. Gap statistic indicated seven as an appropriate number of
clusters. Fig. 12(a) shows the clusters in the Target Space. They are
characterized as regions with very low heat stress but higher GWP
(e.g., clusters 1 and 5) and regions with higher heat stress but better
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warming potential (LCA) and Universal Thermal Climate Index (UTCI).

performance in terms of GWP (e.g., clusters 2 and 4). This represen-
tation allows an initial interpretation of the trade-off. The points are
transferred to the Design Space to guide realization of a specific cluster.
Fig. 12(b) illustrates this for the sensitive parameters Tree-% and PV-
fagade east—west-%. On the one hand, the balance between these two
parameters is particularly relevant when targeting an area with very
low GWP (clusters 0, 2, 4). On the other hand, the points in other
clusters (1, 3, 5, 6) concentrate in the area of Tree-% between 80 % and
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100 %. This suggests that other parameters are relevant for their further
adjustment. Fig. 12(c) demonstrates this idea by taking the WWR into
consideration. This additional design parameter can improve control on
cluster 1 and 5.

Beyond coordinating selected parameters, the methodology allows
to present a complete picture of Design Space ranges for specific clus-
ters. Fig. 13 shows the range of all inputs for Pareto-optimal solutions
classified in cluster 6 and the corresponding medians. Normalizing
the inputs allows to represent them on a qualitative scale from low
to high. This enables urban planners to set boundary conditions for
further design based on these qualitative aspects. Thereby, Fig. 13
visualizes that planners can achieve the best possible trade-off balance
represented by cluster 6 with a high number of trees and low to
medium crown diameters. PV on facades should reach a high level
and can be combined with a local battery to increase self consumption.
Additionally, this kind of representation allows to identify inputs that
should be more restricted than others for the case study area. One
of these loose parameters are the tree properties (tree height, crown
diameter, crown transparency) which show wider ranges than, e.g., the
Tree-%. This means for the trade-off represented by cluster 6, having a
high number of trees is more important than having a specific species.

6. Discussion

In the following, we interpret the outcomes of our case study and
compare them to existing research while showing limitations. Subse-
quently, we discuss the process for MOO in urban simulation. Finally,
possibilities for utilizing the outcomes for decision support in early
design phases are explained.

6.1. Case study application

The simulation results indicate that the PH refurbishment scenario
performs significantly better than the GEG scenario regarding the trade-
off between GWP and outdoor thermal comfort. However, there are
areas where the results overlap, indicating solutions that could be
achieved with both scenarios. Regarding Pareto-solutions for GWP and
outdoor thermal comfort, the PH scenario always represents the best
possible option and should therefore be preferred. In this context,
lifecycle-based calculation is an important requirement. High energy
standards lead to increased GWP from insulation material that may
offset the operational savings [46]. As general benchmarks for lifecycle-
based GWP in building refurbishment are to be developed, a general
comparison of absolute results is hardly feasible [86]. Due to the
credited electricity production from PV during the period of electric
grid decarbonization, the PH scenario achieves negative GWP results
in some constellations. However, other studies show that even with PV,
a zero-energy building could not be realized hourly, but this strongly
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depends on the assumptions made in the investigation [87]. In our
study, PV integration on roof and facades proofs as a valuable option
for today’s refurbishment interventions in terms of GWP reduction.
Solutions with high PV percentages are present in the Pareto-optimal
set (Figs. 7 and 12(b)), although shading by trees may affect their
efficiency. Heat pumps strongly support the share of consumed PV
electricity. Therefore, other heating systems may behave differently
regarding GWP.

In our case study, the trade-off between lifecycle-based GWP and
outdoor thermal comfort could already be shown in early planning
phases. Tree percentage, crown diameter, and facade-PV shares are
particularly sensitive control parameters for this trade-off. However,
the clustering of the PF and the inverse transformation into the Design
Space show that other input values (e.g., WWR, see Fig. 12) are also
relevant for balancing the trade-off when targeting for specific clusters.

In this study, we chose the KPIs for an existing neighborhood and
made several assumptions. These include averaging UTCI values over a
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grid around the central building. Although, this has been proposed in
other studies [88] it might not be an appropriate approach for new
developments or other neighborhood typologies. Accordingly, other
cases or scales need context-specific evaluation criteria [89].

6.2. Process and tool-chain for trade-off investigation

The presented process can serve as a guideline for setting up cou-
pled urban simulation models and exploring trade-offs. The exemplary
tool-chain allows a fast and effective determination of the PF in the
context of computationally expensive urban simulation models. This
contributes to making informed decisions on the prevailing trade-offs
and their control options with few simulations. The GPR-based Paref
algorithms require significantly fewer model evaluations than evolu-
tionary algorithms such as NSGA-II, to obtain an initial representation
of the PF. This finding is consistent with studies that have applied Paref
to mathematical problems [76]. With our case study, we demonstrate
its usability in the context of practical urban design.

The coupling of regular search and fill-gaps algorithms from the
Paref library leads to a well-covered PF. In this context, points that are
not identified as Pareto-solutions but are very close to this property also
contribute to a better surrogate model quality. The treatment of these
points close to the PF is discussed in research regarding the robustness
of the obtained results. It may be preferable for urban planners to
have solutions that are very close to optimal, but more robust to
uncertainties in the urban system. [90].

Surrogate model validation shows that the necessary number of
training points required for good prediction quality can vary signif-
icantly depending on the target value. For instance, the LCA-GWP
surrogate model performs well with few training points. In contrast,
the UTCI model shows lower uncertainties and convergence only with
a significantly higher number of input values (see Fig. 9).

Utilizing the presented tool-chain allows to perform optimization
and simulation mostly independently via exchange files. This allows
for the future integration of additional simulation components and
aspects on the urban scale. However, users need to be aware of the
difficulties that arise from such sophisticated simulation models. The
more components and relationships are integrated, the more difficult it

becomes to comprehend the underlying mechanisms and to verify the
model.

6.3. Multi criteria decision support in early design phases
The evaluation of the Pareto-points identified in the optimization

process offers the possibility to present the scope of action and gives an
overview of feasible trade-off balances. The exploration with surrogate
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models also reveals intervention options that allow to steer the design
into a specific trade-off area. Relevant control variables (Design Space)
for the considered aspects (Target Space) can be narrowed down and
further analysis can be built upon through sensitivity analyses. This
is especially important due to the nonlinear nature of building simu-
lations [91]. Sobol Sensitivity Analysis provides a way to obtain the
influence of input uncertainty on output variance in such nonlinear
systems [92]. However, the analysis has been applied to surrogate
models, which may cause inferences if these models are not fitted
sufficiently to the data.

The presentation of Design Space variables in two- and three-
dimensional spaces provides easily interpretable support for neighbor-
hood planning in early phases (Fig. 12), where significant influence
on lifecycle-based GWP of neighborhoods can be exerted [93,94]. The
early knowledge of design options and their influence on the resulting
trade-off balance can improve designers’ understanding of the tasks
and set the base for better designs in later phases [95]. In order to
allow urban planners to benefit from the developed process, urban
planning departments need to widen their view and allow a broad
perspective on given tasks. This fosters an early understanding of the
necessary boundary conditions for designing or transforming urban
neighborhoods where practicable advice is currently missing [3,4].

6.4. Case study limitations

Besides the evaluated KPIs, various qualitative aspects of the urban
environment need to be considered in decision making [96]. The
simulation model in this study is limited in many respects to essential
aspects of outdoor and indoor simulation. Therefore, a comprehen-
sive representation of reality is hardly possible, particularly in early
project phases where little information is available on construction
and outdoor space. The model used in this context represents a com-
promise between accuracy and computational costs. The results of
wind considerations could be improved by applying a more expensive
Computational-Fluid-Dynamics method. Additionally, the selected pa-
rameters should be validated against measured data to adjust the model
more accurately for the site under consideration. Another disadvantage
of the simulation model is its complexity, which requires expertise,
simplifications, and the specification of numerous boundary conditions.
These include usage profiles, existing materials properties, PV efficien-
cies, or future prospects on LCA data, such as the decarbonization rate
of the electricity grid.

Regarding MOO, only two aspects (GWP and outdoor thermal com-
fort) have been evaluated in this study. Due to the necessary fixation of
research interest at the beginning of the workflow, there is a risk of not
recognizing further trade-offs resulting from the identified solutions.

The results of the case study were generated in the context of
Germany. This brings boundary conditions to climate and LCA data
sets. Accordingly, they cannot be transferred to other countries without
restrictions.

7. Conclusion

This paper describes the generic process of Urban Systems Ex-
ploration. This process integrates multi-objective optimization (MOO)
into urban planning to support multi-criteria decision making and
demonstrates its application in a case study. The developed simulation
model of the urban environment captures various interactions between
buildings and the outdoor space, but the model evaluation is compu-
tationally expensive. By developing a tool-chain based on the generic
process and applying it to a case study neighborhood, it was possible to
identify the Pareto Front (PF) between lifecycle-based global warming
potential (GWP) and outdoor thermal comfort with 100 evaluations of
the simulation model. We showed how the results of the process can
be used to demonstrate the scope for action in early design phases.
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In addition, the most relevant aspects for controlling the prevailing
trade-off were identified.

While many MOO applications focus on optimizing individual build-
ings or improving already existing design ideas, this study shows how
general guidelines for multi-criteria decision making can be derived
on a neighborhood scale. This perspective is becoming increasingly
important as city administrators need to set the boundaries for sus-
tainable urban development, especially in the existing building stock.
Thereby, urban planners get the opportunity to derive general condi-
tions for neighborhood development plans or for initializing a planning
competition. Our work shows that MOO can support urban planning
and decision making with this information but it needs a structured
process for its implementation in current urban design practice. The
results from this process support urban planners and decision makers
in discussions with different departments, by emphasizing that not only
one, but a variety of optimal solutions are feasible. Urban Systems
Exploration can serve as an eye-opener in discussions where positions
are deadlocked and each party is predominantly fixated on their own
aspects.

The intensive development of sophisticated simulation models for
individual aspects has led to the need for processes and methods that
allow for the coupling and efficient analysis of these models, as ad-
vances in computing power are struggling to keep pace. The approach
presented here offers such advantages by going beyond the identifica-
tion of single optimal solutions and focusing on obtaining a complete
picture of the prevailing trade-offs and possible interventions. Deriving
actionable recommendations from the results is critical because only
a small group of users can operate these complex models. Thus, the
presented methodology contributes to a better integration of a systemic
perspective into urban planning practice.

The application in our case study shows a clear trade-off between
the considered aspects. The better the outdoor thermal comfort in
summer, the worse the GWP, and vice versa. The observed trade-off is
particularly relevant in the context of advancing climate change and the
necessary transformation of the urban environment. While this finding
cannot be generalized because it depends on modeling assumptions,
it highlights the importance of investigating such relationships. The
integration of trees and PV is an essential lever to balance this trade-
off. The results also show that the first intention of the contradiction
between shading trees and sun-exposed PV may be misleading, as we
also identify Pareto-solutions with high shares of trees and PV. Thus,
both should be considered when designing interventions to support the
ongoing urban transformation process.

There is scope for further development, particularly in scaling up
the approach to the city level. Urban typologies offer a promising way
to identify general recommendations. In addition, further interventions
should be included in the study, such as densification, conversion, and
a variety of deep refurbishment packages for existing buildings. Extend-
ing the MOO algorithm to more than two-dimensional problems is also
challenging due to the increasing number of simulation runs required.
The development of a practical Grasshopper plugin that allows better
integration of the Paref algorithm in the simulation framework could
foster this. In addition, no categorical inputs have been incorporated
into the optimization approach. This advancement can also contribute
to integrating more qualitative aspects in the optimization, such as
individual perception of the environment or social interaction. The
probabilistic nature of the GPR surrogate models offers the possibility
of an in-depth evaluation of prediction uncertainties to support deci-
sion making. Hence, further evaluation and presentation of the results
should be developed in cooperation with urban planners in order to
make the results accessible to practitioners in the most helpful form.
The generic Urban Systems Exploration process has been shown to be
a suitable methodological framework for this purpose, in which the
integration of other search and evaluation methods is possible.
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