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  10 

Summary 11 

• Resprouting is a crucial survival strategy following the loss of branches, being it by 12 

natural events or artificially by pruning. The prediction of resprouting patterns on a 13 

physiological basis is a highly complex approach. However, trained gardeners try to 14 

predict a tree’s resprouting after pruning purely based on their empirical knowledge 15 

and a visual check of the tree’s geometry. In this study, we explore in how far such 16 

predictions can also be made by algorithms, especially using machine learning. 17 

• Table-topped annually pruned Platanus × hispanica trees at a nursery were 18 

documented with terrestrial LiDAR scanners in two consecutive years. Topological 19 

structures for these trees were abstracted from point clouds by cylinder fitting. Then, 20 

new shoots and trimmed branches were labelled on corresponding cylinders. Binary 21 

and multiclass classification models were tested for predicting the location and 22 

number of new sprouts. 23 

• The accuracy for predicting whether having or not new shoots on each cylinder 24 

reaches 90.8% with the LGBMClassifier, the balanced accuracy is 80.3%. The 25 

accuracy for predicting the exact numbers of new shoots with GaussianNB model is 26 

82.1% but its balanced accuracy is reduced to 42.9%. 27 

• The results were validated with a separate evaluation dataset. It proves a feasibility in 28 

predicting resprouting patterns after pruning using this approach. Different tree species, 29 

tree forms, and other variables should be addressed in further research.  30 
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 43 

1.  Introduction 44 

Disturbances to tree growth like ice storms, fires, wind and diseases (Hauer et al., 2006; 45 

Simler et al., 2018) are common in nature. They cause great loss in trees’ biomass especially 46 

above the ground. In view of this, resprouting is a vital survival strategy for most tree species: 47 

new shoots can grow out of dormant buds rapidly at certain positions after the disturbance 48 

occurred. This process is recognized as a major force in forest regeneration (Matula et al., 49 

2019) and has significant impacts on forest dynamics (Martini et al., 2008). Humans 50 

recognized and harnessed these phenomena from early times (Candel-Pérez et al., 2022; Petit 51 

& Watkins, 2003). A famous example is pollarding, where all the shoots of a tree crown are 52 

regularly cut off to encourage the growth of new sprouts, which were used as firewood and 53 

material for weaving baskets.  54 

Regardless of the practical use, it is a highly interesting but at the same time very complex 55 

challenge to understand and predict the resprouting patterns of trees caused by disturbances 56 

on a physiological basis. These patterns are firstly determined by axillary buds which either 57 

form new shoots or enter dormancy (Suzuki, 2002). This “decision” is essentially controlled 58 
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by hormone signals. Auxin was considered one of the main mediator in the 20th century, 59 

while new findings indicate that cytokinins (Salam et al., 2021; Schneider et al., 2022) and 60 

strigolactones (Gomez-Roldan et al., 2008) play a major role in apical dominance and 61 

branching inhabitation respectively. Without a clear conclusion yet regarding their exact 62 

mechanisms, studies tried to understand resprouting patterns from other micro and macro 63 

perspectives: its relation to genetic regulation (Hill & Hollender, 2019), in responding to 64 

seasonal adaptation (Singh et al., 2022), or by an explanation known as Low Energy 65 

Syndrome (Martín-Fontecha et al., 2018).  66 

However, these endogenous physiological processes do not tell the whole story of resprouting. 67 

Leaf area and light are redistributed after the disturbances, which then affects photosynthetic 68 

processes (Balandier et al., 2000). This does not simply mean a decrease in photosynthetic 69 

capacities, but involves reallocation of carbon- and other resources among plant organs such 70 

as fruits (Kohek et al., 2015; Tosto et al., 2023) and flowers (Grechi et al., 2022). What makes 71 

the impact of this disturbance even more complex is timing. For example, summer pruning on 72 

an apple tree normally causes a temporary loss of apical dominance and increase its cytokinin 73 

supply. But depending on its exact timing, the dominance may be delayed or even prevented 74 

(Saure, 1987). As a result, a precise analysis of how a disturbance reshapes a tree using a 75 

physiological approach must address 1) primary status of hormone, 2) resource reallocation, 76 

and 3) timing issue. To our knowledge no research has brought all these aspects together so 77 

far. 78 

Even without any precise analytical tools regarding resprouting analysis, skilled practitioners 79 

learn how to prune a tree in their charge. They neither measure its sap-flows with multiple 80 

sensors nor meter the cytokinin concentration in chemistry labs. By going around the tree and 81 

observing the main branches, they decide where to prune. Their decisions are based on 82 

empirical knowledge of natural phenomena, originally derived from accurate observations of 83 

causes and effects – the tree’s resprouting reaction to the loss of branches by pruning. 84 

Countless repetitions of similar processes have been experimented in horticulture over 85 

centuries (Saunders, 1898). For a gardener, his or her primary pruning skills may start with a 86 

set of general rules written in a manual book (Brickell & Joyce, 1996). Then, their skills will 87 

independently evolve further through repeated practices at work specific to different climate 88 

zones, species etc. If their pruning decisions lead to resprouting reactions largely similar to 89 

their expectations, gardeners finally prove to be able to predict the tree’s reaction purely on 90 

visual observation and geometrical patterns without digging deep into simulating 91 

physiological processes.  92 
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In horticulture and arboriculture, we currently see a strong trend towards automation of 93 

pruning by machines or robots (Sam et al., 2022). So far, these are comparatively simple, 94 

standardized actions (M. Li et al., 2021; Sam et al., 2022), but the more complex the tasks 95 

become in this regard, the more important is a plausible, robust and prompt prediction of the 96 

growth reaction of a tree to pruning. At the same time, it can be assumed that in the future 97 

trees worldwide will increasingly experience growth disturbances due to the consequences of 98 

climate change (drought, stronger and more frequent storms), which will be coupled with a 99 

loss of biomass and subsequent resprouting. In order to assess the development of such trees, 100 

for example in an urban context, also here a plausible, robust and prompt prediction of 101 

resprouting in response to the previous loss of branches and twigs is necessary. 102 

In this regard, physiological forecasts are too complex, rely on too many often-unknown 103 

parameters (e.g. weather) and thus are too sensitive to errors and too slow. The aim of the 104 

study at hand is to develop first basics for a prediction model on the basis of geometric 105 

patterns corresponding to the approach of experienced gardeners using a concrete example.   106 

Rapid development in remote sensing is providing a solid base for this aim. First of all, 107 

terrestrial LiDAR scanners can capture detailed geometry of objects with a precision up to 3 108 

mm from multiple standing positions (RIEGL, 2023). This method proves capable of 109 

capturing a tree’s trunk and branches with more than 10 mm diameter (Gobeawan et al., 2018; 110 

Yang et al., 2022) during its leaf-off state (Kükenbrink et al., 2022). Raw data is stored in the 111 

form of a discrete point cloud. Furthermore, different approaches have been developed to 112 

extract tree structure: skeleton abstraction following occupancy grids (Bucksch et al., 2010; 113 

Sun et al., 2022); branch direction by eigenvectors of point patches or sections (Bremer et al., 114 

2013; Raumonen et al., 2013); skeleton as the Dijkstra’s shortest path from the tree base to 115 

ends (Du et al., 2019; J. Li et al., 2022, 2022; Wang et al., 2014); skeleton redrawn with 116 

searching steps (Hackenberg et al., 2014); learning the reconstruction pattern through a neural 117 

network (Liu et al., 2021). Overall, these abstracted information about tree architecture is 118 

called quantitative structure model (QSM) (Åkerblom et al., 2017; Shu et al., 2022). In this 119 

way, every segment of the tree stem or branch can be retrieved containing its diameter, length, 120 

axial direction, hierarchy in the whole branching structure as well as the pointer to its parent 121 

and child segments. 122 

These data for a computational model are like experiences for a human brain. The process for 123 

an algorithm to “learn from experience” without being explicitly programmed was defined as 124 

machine learning (Samuel, 1959). Over 70 years of development, machine learning models 125 
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have proven capable and efficient to inherently solve the 5 typical problems of data science, 126 

namely classification, anomaly detection, regression, clustering and reinforcement learning 127 

(Alzubi et al., 2018). Among them, classification models can assign class labels to testing 128 

instances where the predictor features are known (Kotsiantis, 2007). Depending on the 129 

number of output labels, they work for both binary and multi-class classification problems. To 130 

establish such models from a practical aspect, open-source packages such as scikit-learn 131 

(Pedregosa et al., 2011) have integrated common ones, offering an easy access to adapt 132 

parameters for different applications. 133 

Equipped with the digital tools above, accurate information regarding tree structures can be 134 

collected and processed in analogy to what a real gardener does. Building on this, we are 135 

addressing the following questions: How can we predict the position and number of 136 

resprouting shoots based on a purely “visual approach” (pattern recognition)? Which machine 137 

learning model achieves the best accuracy for this task? 138 

 139 

2. Materials and Methods 140 

2.1 Study case 141 

To address our questions, we looked for tree cases that are frequently pruned in a distinct 142 

manner under similar environmental conditions. At Bruns Nursery, Bad Zwischenahn in the 143 

north of Germany, so-called table-topped plane trees (Platanus × hispanica) are grown in a 144 

clearly defined area under standardized conditions. The crowns of these tree are shaped into a 145 

flat layer through labour-intensive maintenance. This form probably origins from Baroque 146 

gardens, where plants were kept in an orthogonal manner to enhance the orientation or 147 

perspective (Dobrilovič, 2010). Due to the expansion of the crown like an umbrella, it is still 148 

used in European cities nowadays for shading squares and pedestrian areas (e.g., the central 149 

square at Labouheyre, France). To produce such trees, there are in general two phases. In the 150 

first phase, a young plane tree with a naturally grown canopy is intensively trimmed. At 151 

around 3 meters height six branches are selected and bent horizontally into different directions 152 

with equal angles in between. Where necessary, bamboo sticks are added as temporary 153 

supports to force the branch into the aimed direction (see “1st year” in Fig. 1). In the second 154 

phase, new shoots or even some of the older shoots from these six main branches are carefully 155 

selected and pruned by experienced gardeners. Pruning decisions are important at this phase 156 

to enable shoot growth only at desired positions. Some shoots reserved from previous years 157 
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could still be trimmed off if there appears another new shoot that becomes a better option. 158 

This procedure is repeated in the following years (see “2nd-6th year” in Fig. 1). Multiple 159 

reiterations of the tree by resprouting result in a complex branching pattern. Due to the annual 160 

pruning and relative complex branching pattern the second phase of these cases is considered 161 

effective to analyse abilities of machine learning models in predicting resprouting patterns 162 

based on quantitative structural tree models under complex yet repetitive conditions. It should 163 

be noticed that the aim of this study is not recreating this specific form of tree geometry like 164 

the table-topped Platanus × hispanica but to gain fundamental knowledge regarding 165 

resprouting reactions of trees.   166 

 167 

Figure 1. The procedure for producing a table-topped platanus through iterative branch and 168 

shoot selection and pruning with intensive labour force. 169 

2.2 Data acquisition and pre-processing 170 

In subsequent two winters, namely in January 2022 and January 2023, an area consisting of 3- 171 

and 4-year-old table topped platanus (see Fig. 2a) planted in 3 rows at Bruns Nursery were 172 

scanned with LiDAR scanner RIEGL VZ-400i. The scanner was mounted on a tripod in 2022, 173 

while mounted on a vehicle (see Fig. 2b) in 2023. All the scans were set to “Panorama30” 174 

standard (with angular resolution 0.030°) and conducted in a “stop-and-go” method. Scanning 175 

positions were located along each row at every third tree (ca. 12 m). Point clouds from 176 

different scan positions were automatically registered in RiSCAN Pro in reference to GNSS 177 

coordinates recorded with Leica Zeno FLX100 plus (Leica, 2023). The original GNSS 178 

coordinates indicate accuracies ranging between 0.68 to 0.80 m at different scan positions. 179 

Therefore, the reliability on GNSS was set to low during the automatic registration and the 180 

multistation adjustment. With all steps above, we got two point clouds containing all the tree 181 

cases for the year 2022 and 2023 respectively. Afterwards, individual trees were segmented 182 

manually (see Fig. 2c). This manual step is efficient for our cases because those trees planted 183 
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in the nursery were almost perfectly aligned in an equal distance and their crowns did not 184 

touch each other. The ground surface was flat and clear and there were no irrelevant objects 185 

such as shrubs around tree trunks. A total of 49 plane trees were scanned in 2022 while the 186 

number of trees scanned in 2023 was 28, (due to tree sales during 2022, see Fig. 2d and 2e). 187 

As a result, we got point clouds of 28 plane trees for both years.  188 

The next step was to identify changes in the geometrical structure of the trees in these two 189 

years (see Fig. 2h). For this purpose, the two corresponding scans regarding the same trees 190 

must be aligned. The GNSS coordinates have an offset up to 0.8 meters, which is not 191 

sufficient to our demand. The most common algorithm for matching 3d models precisely, 192 

namely Iterative Closest Point (Rusinkiewicz & Levoy, 2001), does not work for these tree 193 

cases because the new shoots and the extensive pruning on tree branches have altered their 194 

geometries significantly. A supervised alignment by manually picking point pairs on 195 

corresponding branch surfaces also caused visible deviations owing to the girth growth. 196 

Finally, we manually aligned all tree pairs individually using multiple views. This guaranteed 197 

the best possible alignment despite significant geometrical changes between the two scans. 198 

Only then, we were able to precisely detect the changes caused by growth and pruning 199 

between the point clouds. In principle, point sets that only appeared in the scan of 2022 and 200 

disappeared in the scan of 2023 should represent branches pruned away. Conversely, point 201 

sets that were only found in 2023 should represent new shoots. In practice, however, an object 202 

even with no change in its geometry is unlikely to have identical points on its surface in the 203 

two independent scans. To solve this, cloud-to-cloud distance (Jafari et al., 2017) was applied. 204 

It calculates the distance between each point in one point cloud to its nearest neighbour in the 205 

other point cloud using Hausdorff distance algorithm (Girardeau-Montaut, 2023). Depending 206 

on point cloud quality and precision in alignment, a minimum distance threshold ranging 207 

between 0.020 to 0.045 m was customized to each point cloud for segmenting unchanged and 208 

changed parts (see Fig. 2f and 2g).  209 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2023. ; https://doi.org/10.1101/2023.08.11.552927doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.11.552927
http://creativecommons.org/licenses/by-nc-nd/4.0/


 210 

Figure 2. The overall procedure for detecting pruned branches and new shoots from point 211 

clouds of LiDAR scans of two consecutive years. 212 

Parallel to change detection, the point clouds were also used to create quantitative structural 213 

models (QSMs) of the trees (see Fig. 3a) by TreeQSM (Raumonen et al., 2013) in MATLAB 214 

(The MathWorks Inc., 2023) (see Fig. 3b). Some other QSM reconstructing programs like 215 

AdTree (Du et al., 2019) and AdQSM (Fan et al., 2020) build tree structures by the Dijkstra’s 216 

shortest path and the minimum spanning tree. They appeared to be sensitive to outliers in our 217 

dataset. Especially when they built detailed twigs at the branch’s high end, many shoots were 218 

invented by the algorithm due to outliers, not reflecting the actual sprouting pattern. In 219 

comparison to them, TreeQSM fits cylinders to point patches in defined sizes. This approach 220 

performs better in noise and outlier resistance than those methods using the Dijkstra’s shortest 221 

path. For each point cloud, we tested 18 configurations of different settings regarding the 222 

patch sizes for reconstructing the QSMs in TreeQSM. For each configuration, the 223 

reconstruction was repeated 15 times to reduce the impacts of pseudo-random numbers in this 224 

TreeQSM process. Finally, the QSM with minimum mean distances from points to trunk and 225 

branch cylinders was chosen as the model for the corresponding point cloud. It should be 226 

addressed again that each tree is represented with two point clouds, and accordingly two 227 

QSMs, showing their situations in 2022 and 2023 respectively. To further ensure a precise 228 

reconstruction, the outliers were pre-deleted through the statistical outlier removal tool (Rusu 229 

& Cousins, 2011). 230 

2.3 Labelling and reorganizing the dataset 231 
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In the pre-processing, the trimmed branches as well as the new shoots were detected in the 232 

point clouds while topological cylinders were generated with TreeQSM. The next step was to 233 

combine these two datasets. The individual cylinders of the QSMs must be labelled as to 234 

whether they are part of an unchanged branch (not considering the girth growth), a pruned 235 

branch or a new shoot. This was achieved by making use of a distance threshold between 236 

points of the cylindrical axis and their nearest neighbouring point of the segmented point 237 

clouds. For our data, we examined only the start and the end point of every cylinder. If the 238 

sum of their mean distances to their 10 nearest neighbours with the same label (i.e., trimmed 239 

branches) was below 100 mm, this cylinder was also labelled the same (see Fig. 3c 3f). To 240 

enhance the accuracy of the labelling, three more criteria were added based on practical rules 241 

when pruning these trees: for any cylinder labelled as part of either a new shoot or a pruned 242 

branch, its radius must be smaller than 20 mm (one year old shoots do not reach more than 20 243 

mm in diameter for the trees at hand); for any cylinder labelled as part of a pruned branch, its 244 

branch hierarchical order must be larger than 1 (not the tree trunk and the primary branch); 245 

the label for trimmed branches and new shoots on one cylinder is passed on to all its children 246 

cylinders. 247 

After labelling, the cylinders of different labels (unchanged branches, pruned branches and 248 

new shoots) are still separated in two QSMs regarding the same tree. There are no 249 

correspondences between these two QSMs as their reconstruction processes are independent. 250 

Therefore, cylinders of the trimmed branches in one QSM must be integrated into the other 251 

QSM that contains the main tree structure and the new shoots, or reversely, cylinders of new 252 

shoots must be integrated into the QSM with the trimmed branches. This is a tricky process. 253 

While the geometric data remain the same for every cylinder, its topological data regarding 254 

the ID of the cylinder, its parent cylinder and its child cylinder must be corrected, as well as 255 

the branch order and its position in the branch. Regarding whether to transfer cylinders of new 256 

shoots or pruned branches to the other QSM, considerations can be described as follows. The 257 

pruned branches, in general, could only be the same size or thicker than the new shoots. 258 

Consequently, cylinders of pruned branches have higher robustness in their position through 259 

cylinder fitting. As a result, the certainty for redefining their topological parent in another 260 

QSM based on their relative positions is supposed to be higher. So, for our dataset, the 261 

cylinders of pruned branches were picked out from their original QSM and integrated into the 262 

other QSM that has the new shoot cylinders (see Fig. 3e). Their new parent cylinders were 263 

redefined as those whose end points were located closest to their starting point. Based on this, 264 
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the topological data for every single cylinder in the newly merged QSM were completely 265 

overwritten due to this change. 266 

Finally, the total number of pruned branches and new shoots on every cylinder was counted 267 

(see Fig. 3d). This became the crucial attribute for the prediction models in the next step. 268 

 269 

Figure 3. Overall procedure for labelling and reorganizing the dataset. 270 

2.4 Prediction with various classification models 271 

The dataset after all the processes described above contains 34,245 items, representing 28 272 

table topped plane trees. Each item corresponds to one cylinder, which contains the following 273 

attributes: tree’s ID; cylinder’s ID; parent cylinder’s ID; child cylinder’s ID  in the same 274 

branch; x-y-z coordinate of the cylinder start; a normalized 3d vector of the axial direction; 275 

branch’s ID; its sequence in the branch; branch order; cylinder length; cylinder radius; the 276 

number of pruned children and new children; the Boolean value if this cylinder is virtually 277 

added during QSM reconstruction; the Boolean value if this cylinder is pruned out.  278 

The relationships between each two attributes (except for the IDs and Boolean values) are 279 

illustrated in appendix 2. For our research purpose, the sprout location and numbers are the 280 
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label of new shoots on each cylinder. We tested classification models in machine learning for 281 

finding links between these topological and geometrical attributes and the predicting target. 282 

Among these target labels, 16,183 (47.3%) cylinders were labelled “-1” meaning that they are 283 

trimmed away. These cylinders are not feeding into machine learning models. 15,348 (44.8%) 284 

cylinders have no new shoot, thus labelled with “0”. 2,329 (6.8%) cylinders have one new 285 

shoot (labelled “1”). There are less cylinder samples, whose new shoot number is larger than 286 

“1”: 321 (0.94%) cylinders have 2 new shoots; 54 (0.16%) cylinders have 3 new shoots; 7 287 

(0.02%) cylinders have 4 new shoots; 2 cylinders have 5 new shoots; only 1 cylinder has 6 288 

new shoots on it. Due to the extreme rare samples with a high number of new shoots, we label 289 

those cylinders that have more than 4 shoots with new shoot number 4. 290 

Owing to the limited volume of data we acquired, the majority of the items labelled with new 291 

shoot number from “0” to “4” must feed into machine learning models (16,558 items 292 

representing 26 trees). Nevertheless, we reserved 2 trees (1,504 items) as an evaluation 293 

dataset. This evaluation dataset was only used for validating the results (see section 3), not for 294 

training the model. The dataset for machine learning was further divided into a training set 295 

(13,246 items) and a testing set (3,312 items, with a test size of 0.2). The testing set prevented 296 

overfitting the models to the given data. 297 

For getting a quick overview of the performances across a wide range of classification models 298 

in machine learning on the dataset, we used lazy predict (Pandala, 2023) to run scikit-learn 299 

(Pedregosa et al., 2011) to compare 25 common classification models with their default 300 

settings, including GaussianNB, NearestCentroid and LGBMClassifier. Besides, we tested a 301 

basic Artificial Neural Network model (ANN) built with Keras (Chollet, 2015). It consisted of 302 

two hidden layers with 64 and 128 nodes respectively (see Fig. 4 left). In addition, to examine 303 

a graph neural network (GNN) model, the dataset for each tree was processed to a graph 304 

(Salama, 2021), where every cylinder item was a node connected to its parent and children 305 

(the node connection for one tree is illustrated in Fig. 4 right). These graph data were fed into 306 

a GNN model named “baseline classifier” (see table 2.1) including 39,512 trainable params 307 

and 1,174 non-trainable params.  308 
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 309 

Figure 4. Architecture of the ANN (left) and Graph (right) of one tree used in our test. 310 

Table 2.1. Architecture of the GNN model in our test. 311 

Layer (type) Output Shape Param Connected to 

input_features (InputLayer) [(None, 11)] 0 [] 

ffn_block1 (Sequential) (None, 64) 5228 ['input_features[0][0]'] 

ffn_block2 (Sequential) (None, 64) 8832 ['ffn_block1[0][0]'] 

skip_connection2 (Add) (None, 64) 0 ['ffn_block1[0][0]', 'ffn_block2[0][0]']                            

ffn_block3 (Sequential) (None, 64) 8832 ['skip_connection2[0][0]'] 

skip_connection3 (Add) (None, 64) 0 ['skip_connection2[0][0]', 'ffn_block3[0][0]'] 

ffn_block4 (Sequential) (None, 64) 8832 ['skip_connection3[0][0]'] 

skip_connection4 (Add) (None, 64) 0 ['skip_connection3[0][0]', 'ffn_block4[0][0]']                     

ffn_block5 (Sequential) (None, 64) 8832 ['skip_connection4[0][0]'] 

skip_connection5 (Add) (None, 64) 0 ['skip_connection4[0][0]', 'ffn_block5[0][0]'] 

logits (Dense) (None, 2) 130 ['skip_connection5[0][0]'] 

 312 

We tested all these classification models in two manners of labelling: binary labels that only 313 

classify cylinders if they will or will not grow new shoots, and multiclass labels that classify 314 

cylinders based on the exact number of new shoots ranging between 0 to 4. 315 

 316 

3. Results 317 

The accuracy, balanced accuracy, and F1 Score (weighted average F1 score for multiclass 318 

labels) of the tested models in a default setting or with a basic architecture (see section 2.4) 319 

are listed in Fig. 5. Each scoring index ranges between 0 and 1. 1 is the best score, meaning 320 
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that all the shoot labels are correctly predicted. On the contrary, 0 is the worst score, 321 

representing no correct prediction. In the figure, these models are shown in a descending 322 

order from the left to the right according to their total scores in classifying binary labels. 323 

Among the three sub-scores, accuracy reflects an overall rate of true predictions for all labels. 324 

Our datasets are imbalanced in terms of different label numbers. Therefore, balanced accuracy, 325 

which gives equal weights to the true prediction rates for each label, is also an important 326 

indicator in evaluating their performances. F1 score is another effective index for the 327 

imbalanced classifications but attaches more importance to true positives (predicting the 328 

cylinders with new shoots correctly) while it ignores the true negatives (predicting the 329 

cylinders with zero shoot correctly). Based on these benchmark scores, LGBMClassifier and 330 

GaussianNB have top scores for predictions with binary and multiclass labels respectively. 331 

The confusion matrix of the LGBMClassifier with binary labels in testing set is shown in 332 

table 3.1. The confusion matrix of the GaussianNB model with multiclass labels in testing set 333 

is shown in table 3.2. 334 

 335 

Figure 5. Benchmark of tested classification models for binary and multiclass labelling. 336 

Table 3.1. Confusion Matrix of LGBMClassifier with Binary Labels in Testing Set 337 

 Negative / 0 Positive / 1 

Negative / 0 2883 (79.8%) 170 (4.7%) 

Positive / 1 209 (5.8%) 351 (9.7%) 

 338 
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Table 3.2. Confusion Matrix of GaussianNB Model with Multiclass Labels in Testing Set  339 

 0 1 2 3 4 

0 2458 (74.2%) 309 (9.3%) 33 (1.0%) 0 (0%) 1 (0%) 

1 153 (4.6%) 258 (7.8%) 24 (0.7%) 0 (0%) 3 (0.1%) 

2 29 (0.9%) 27 (0.8%) 5 (0.2%) 0 (0%) 0 (0%) 

3 4 (0.1%) 4 (0.1%) 0 (0%) 0 (0%) 1 (0%) 

4 2 (0.1%) 1 (0%) 0 (0%) 0 (0%) 0 (0%) 

 340 

To further validate these two models, we applied the trained LGBMClassifier model and 341 

GaussianNB model to the evaluation set with binary and multiclass labels respectively. The 342 

results of the evaluation are visually illustrated in supplementary material. Their accuracy, 343 

balanced accuracy and F1 Score on the validation set in comparison to the testing set is shown 344 

in table 3.3. The accuracy, balanced accuracy and weighted F1 score at the evaluation set 345 

(only 2 trees) have maximum around 10% difference to the scores on the benchmark. 346 

Table 3.3. Scores of LGBMClassifier and GaussianNB Model in Evaluation Set 347 

 Scores in testing set Scores in evaluation set 

 Accuracy Balanced 

accuracy 

F1 Score Accuracy Balanced 

accuracy 

F1 Score 

LGBMClassifier with binary labels 0.91 0.80 0.91 0.91 0.81 0.91 

GaussianNB Model with multiclass 

labels 

0.82 0.43 0.84 0.93 0.30 0.83 

 348 

4. Discussion 349 

In order to be able to meaningfully interpret and evaluate the results, it is first necessary to 350 

discuss the specific conditions of the dataset and resulting limitations. 351 

The following factors may impact on the accuracy of the extracted geometrical data from the 352 

trees: 1) To prevent browsing the tree barks, protecting covers were installed at a height below 353 

2 meters around the tree trunks. This might have caused the diameter measured at trunk 354 

cylinders to be slightly overestimated. However, we assume that this has no influence on the 355 

prediction model. 2) Minor swinging of the branches by wind during the LiDAR scanning 356 

might have caused outliers or might have led to overestimating the diameter of the smaller 357 

branches. Although the point clouds were denoised through SOR filters, this does not 358 
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guarantee full deletion of these outliers and could then cause inexistent branches in the 359 

cylindrical models. 3) Aligning the same trees with different geometries in the two years is a 360 

nonstandard manual process so far, which can cause inconsistence in change detection and 361 

identification of parent cylinders. A possible alternative to detect these changes is comparing 362 

the occupancy grids (Hirt et al., 2021).  363 

The total cylinder numbers for training the models were limited to 16,558 items representing 364 

26 trees. The percentage of the negative label “0” makes up more than 92% of the total items, 365 

causing an unbalanced rate for the number of positive samples (less than 2500 items). 366 

Unfortunately, these are all available data from the nursery. 367 

Most importantly, the collected dataset in two consecutive years reflects the growth of these 368 

trees under almost identical environmental conditions and pruning regime. More specifically, 369 

the temperature, water content in the soil, wind direction and speed as well as the time of 370 

pruning are all the same for these trees. This means that our method can predict the 371 

resprouting pattern of this kind of table-topped plane trees grown under the same conditions 372 

as in this study at current stage. In case of any changes in the factors mentioned above, it is 373 

unclear so far how accurate the prediction will be.  For instance, the model may not predict 374 

the growth of the same trees in the following year, because horticultural experience shows 375 

that a change in the time of pruning of only one or two weeks can have a significant impact on 376 

the growth of new shoots, especially if there is also a change in weather conditions (e.g. heat 377 

or drought immediately after pruning). 378 

For understanding whether those environmental factors could also be addressed in a 379 

prediction model in the same approach, these environmental data must be collected and 380 

coupled with a larger quantity of trees. This hints to an upcoming step of this study. 381 

Finally, the current model is only the first step in understanding resprouting patterns after one 382 

specific artificial disturbance, namely pruning of table topped trees. Nonetheless we are 383 

optimistic that the approach has great potential for further development and application (see 384 

e.g., (Yazdi et al., 2023)). The application of such model is not limited to repeat what the 385 

gardeners can already do but go beyond knowledge boundaries regarding the resprouting 386 

strategy of trees after disturbances. This can hopefully be achieved through gathering a huge 387 

amount of data. By searching through this database, the “digital gardener” is likely to find 388 

evidence to support its predictions in a more complex context. For this far vision, an open-389 

source and uniformed database about trees (Shu et al., 2022) is required. 390 
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 391 

5. Conclusion 392 

Resprouting patterns are key in understanding regeneration of trees after natural and artificial 393 

disturbances. The interrelationships are very complex, involving among other things the 394 

primary status of hormones, the redistribution of resources, and timing issues. Until now, no 395 

single model can address all these factors in a physiological approach. However, gardeners 396 

and practitioners have been trained to prune trees based on their intuitive predictions since 397 

centuries. They are able to do so based on accumulated knowledge working with trees. In this 398 

study, we gave it a first try addressing the question if computational models, especially 399 

machine learning models could gain similar knowledge as practitioners from horticulture: 400 

what are the location and numbers of new shoots after pruning? Which model would achieve 401 

the best performance?  402 

For this purpose, we scanned a group of annually pruned plane trees at a tree nursery with 403 

LiDAR. The detailed geometry and topology of the branches were extracted through 404 

quantitative tree models. The trimmed branches and new shoots were detected through 405 

comparison between the scans in two consecutive years and this information were finally 406 

labelled on a dataset for training multiple classification models. 407 

We tested 25 common classification models in the field of machine learning with default 408 

settings. Additionally, 1 ANN model and 1 GNN model with most basic architectures were 409 

also tested. Among these models, except for two, all other models have an accuracy and a F1 410 

score higher than 80%. For balanced accuracy, the average score of all the models was ca. 70% 411 

for binary labels; for multiclass labels, the average was 28.3%. 412 

From the results, we can conclude that for the collected dataset, most of the models work well 413 

in telling the position of new shoots but are not accurate in telling the actual shoot numbers at 414 

the specific location. For the best scored models with binary labelling, the LGBMClassifier 415 

can predict the position of new shoots with an accuracy of 90.8% and a balanced accuracy of 416 

80.3%. For predicting the exact number of the shoots, GaussianNB Model performs the best. 417 

The accuracy is 82.1% because most of the cylinders should have the shoot number 0. 418 

However, the balanced accuracy is reduced to 42.9%. 419 

The limitation of the current model is definitely very specific to the studied site, 420 

environmental conditions, tree species and form, and the pruning time. In the next step, a 421 

larger amount of tree data is being collected in the city of Munich to analyse how this 422 
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approach can be extended to a larger scope addressing maybe some of the environmental 423 

factors. In a further vision, a huge database of the “digital gardener” would push forward the 424 

knowledge boundaries in understanding resprouting strategies of trees facing natural and 425 

artificial disturbances. 426 
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Supplementary Materials 610 

611 

Appendix 1. An overview of the workflow for point cloud acquiring and pre-processing 612 
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 613 

Appendix 2. Correlations between each two attributes of the dataset. The number of new 614 

shoots is indicated with the colour, a darker colour represents a larger number of new shoots 615 

on the cylinder. The value “-1” is marked as pruned out cylinders. 616 
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 617 

618 

Appendix 3. Visualizing the evaluation of the LGBMClassifier and GaussianNB models in 619 

predicting resprouting patterns. The ground truths are illustrated in the middle. The binary 620 

predictions using LGBMClassifier are drawn on the lower left side while the multiclass 621 

predictions using GaussianNB model are drawn on the upper right. 622 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2023. ; https://doi.org/10.1101/2023.08.11.552927doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.11.552927
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2023. ; https://doi.org/10.1101/2023.08.11.552927doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.11.552927
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2023. ; https://doi.org/10.1101/2023.08.11.552927doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.11.552927
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2023. ; https://doi.org/10.1101/2023.08.11.552927doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.11.552927
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2023. ; https://doi.org/10.1101/2023.08.11.552927doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.11.552927
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2023. ; https://doi.org/10.1101/2023.08.11.552927doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.11.552927
http://creativecommons.org/licenses/by-nc-nd/4.0/

