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A B S T R A C T

This study explores the potential of using Quantitative Structure Models (QSM) to predict trees’ voxel-based Leaf 
Area Density (LAD) to reduce the workload and data redundancy in studying deciduous trees. For this purpose, 
leaf-on and leaf-off Terrestrial Laser Scanning (TLS) of 16 Platanus x hispanica trees on streets were utilized. QSMs 
were extracted and interpreted into QSM indexes corresponding to voxels, a novel approach introduced in this 
study. Twelve standard regression models were tested to predict the LAD value for each voxel using its QSM 
indexes. The Hist Gradient Boosting Regressor (HGBR) model demonstrated the best performance, with an R- 
squared score of 0.56 and a mean absolute error of 0.0187 m2/m3 (16.33 %) in the LAD prediction. This de
viation mainly happened at the crown center, where branches were dense while leaves were few. The trained 
model was also applied to another set of 13 young plane trees of different tree sizes at a nursery. Their predicted 
Leaf Area Index (LAI) was compared to the LAI measured indirectly by hemispherical photography, showing a 
deviation of 0.12 m2/m2 (8.6 %) for the 3 largest trees with the closest Diameter at Breast Height (DBH) to the 
street trees. The deviations are larger for young nursery trees with smaller DBHs. Therefore, further experiments 
are needed to optimize the voxel size and adapt the model to different species with varying crown sizes.

1. Introduction

Terrestrial laser scanning (TLS) has been widely applied in forestry 
studies for over two decades due to its high efficiency and accuracy in 
surveying tree stands in detail (Akay et al., 2009; Ralph and Jason, 
2000). In the past ten years, both hardware devices (Kükenbrink et al., 
2022) and algorithms have evolved to capture individual trees with 
dense point clouds (Åkerblom and Kaitaniemi, 2021; Calders et al., 
2020; Döllner et al., 2023). In recent years, workflows have been pub
lished to facilitate this digital procedure, such as TLS2trees (Wilkes 
et al., 2023) for tree segmentation. Further methods to extract specific 
tree indexes from segmented point clouds can vary depending on 
research purposes. For example, the ITSMe package in R language 
(Terryn et al., 2022) identifies a tree’s crown and trunk and measures its 
height, diameter at breast height (DBH), crown projection area, etc. 
AdTree (Du et al., 2019) and treeQSM (Raumonen, 2022; Raumonen 
et al., 2013) build cylindrical models of tree branches, which can be used 
for estimating woody biomass. These show an irreversible trend that 
forestry and tree-survey-related studies rely more on accurate quanti
tative data about trees than ever before. Meanwhile, related researchers 

have more efficient tools with easier access.
When investigating deciduous trees, their leaf areas fluctuate peri

odically following seasonal environmental conditions. Consequently, 
performing leaf-on scans in summer and leaf-off scans in winter (or early 
spring) has different utilities. In leaf-on scans, the laser beam is trans
mitted through overlapped leaves and returns with multiple echoes at 
different distances and intensities (Grau et al., 2017). Although not 
every single leaf is captured, the data is used to study leaf angle (Stovall 
et al., 2021), leaf area, and density (Wei et al., 2020). However, the 
occlusions are hardly compensated by refining the rotational angular 
resolution and shortening distances between scanning positions (Abegg 
et al., 2017). Especially for surveying forest inventory, the occlusions in 
leaf-on scans become so intensive that TLS is complemented by new 
lightweight sensors on uncrewed aerial vehicles (Schneider et al., 2019). 
Therefore, when the leaves are not the studying objects but DBH, tree 
height, woody branches, and sometimes objects behind or in the tree 
crowns, leaf-off scans are a proper and more efficient choice on decid
uous trees.

Over the last decade, the leaf-on and leaf-off scans have been adapted 
for the study of urban green systems (UGS). Deciduous species are the 
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most common woody plants in European cities (Alós Ortí et al., 2022; 
Weller, 2021). They provide essential ecosystem services (ESS), such as 
cooling and shading against the urban heat island (UHI) effects (Parsa 
et al., 2019; Rahman et al., 2020). Urban trees, especially deciduous 
trees, improve climate adaptation in cities. Next to their climate regu
lating services (Reid et al., 2005), they offer ESS like reduction of run-off 
(Armson et al., 2013; Rahman et al., 2022), carbon storage and 
sequestration (Strohbach and Haase, 2012), habitat provision (Kowarik 
et al., 2020), air purification (Kroeger et al., 2018; Mcdonald et al., 
2018), noise buffering, recreational benefits and an overall increase of 
property value due to their presence (Bolund & Hunhammar, 1999; Wolf 
et al., 2020). The ESS of urban trees is important for creating sustainable 
and resilient cities and enhancing the overall quality of urban life 
(Duinker et al., 2015).

Leaf-on scans facilitate an estimation of leaf area density (LAD) in 
voxel grids (Hosoi et al., 2013; Soma et al., 2021). It is linked to the 
evaluation of a tree’s canopy performance such as shading or transpi
ration (Eyster and Beckage, 2023; Rahman et al., 2020). Leaf-off scans 
facilitate the collection of structural data of a tree such as DBH, tree 
height, and woody biomass. They are essential to represent the tree 
growth (i.e., used in the CityTree model (Rötzer et al., 2019)). Besides, 
leaf-off scans can also facilitate the management of urban trees in hor
ticultural practice through quantitative structure tree models (QSM) 
(Shu et al., 2024). Based on these requirements, to design and plan UGS 
targeted towards multi-functional uses (Yazdi et al., 2023), both leaf-off 
and leaf-on scans are obligatory in completing the database that con
tains structural and functional components of urban trees (see also tree 
information modeling (Shu et al., 2022)). This would require two scans 
of the same scene and trees in the same year (at least one in summer, the 
other in winter or early spring).

In principle, the leaves are not randomly scattered within a crown 
space. Initiated from apical buds, their distribution pattern follows 
specific regulation of phyllotaxis (Krishnamurthy et al., 2015). Conse
quently, their number, total area, and distribution are strongly con
nected with the position and status of internodes and branches (see 
Fig. 1a). Such relations have been utilized in classical virtual plant 
models by an L-system (Prusinkiewicz and Lindenmayer, 1996), where 
leaves’ position, size, and inclination angle are coded based on the 
internode structure of plants. With this feature, functional structural 
plant models (FSPMs) by L-system was used over 15 years ago to study 
how the leaf architecture affects branch growth through light absorption 
(Pearcy et al., 2005; Sarlikioti et al., 2011). In reverse, leaf distribution 
was simulated based on branching patterns (Prusinkiewicz et al., 2001). 
Those imitated leaves were used to estimate the leaf area (Hemmerling 
et al., 2008), LAD (Jin and Tamura, 2012), and Leaf Area Index (LAI) 
(Jonckheere et al., 2006) of the virtual tree.

Inspired by these studies, this paper addresses the following research 
question: Does a correlation exist between the spatial distribution of 

woody branches and leaf area distribution in real-world applications? 
The real-world applications emphasized in this study are constrained by 
current technical limitations and data precision. Regarding the woody 
structures, we observed that TLS could not capture every detailed twig 
that connects to individual leaves in the leaf-off state of a tree (see 
missing details in Fig. 1b). Although recently developed QSMs contain 
topological and geometrical information in describing branch structures 
(Raumonen et al., 2013; Shu et al., 2022), many other features (i.e. barks 
and nodes) are overlooked. Therefore, the objective of this study is to 
ascertain whether voxel-based LAD for real trees, as extracted from 
leaf-on scans (see Fig. 1c), can also be estimated from specific woody 
branch distribution indexes acquired in leaf-off scans (see Fig. 1b).

Answering this question has significant implications: 1) the leaf-on 
scan of urban trees can be omitted to estimate voxel-based LAD; 2) 
gardeners of the future, when manipulating branches in the leaf-off 
stage of a tree, could also get feedback on the effects on the leaves. 
For these two reasons, this study is a foundation for how the future UGS 
will be designed and managed (Ludwig et al., 2024; Yazdi et al., 2023).

2. Method

2.1. Data collection by TLS

The dataset for studying the QSM-LAD relation requires TLS of trees 
with both their leaf-off scans to extract the QSM of the trees and leaf-on 
scans to estimate their LAD. The trees with leaf-off scans are retrieved 
from the open-sourced multilayered urban tree dataset named TreeML- 
Data (Yazdi et al., 2024). It contains the TLS and QSM of street trees 
collected in Munich in January of 2023 at 40 different streets scattered 
around the city using the scanner Riegl VZ-400i. In this case, the scanner 
was mounted on a vehicle, which stopped at each scanning position. For 
the study at hand, 16 Platanus x hispanica from this database in one 
street were used (see Fig. 2a). They were manually segmented out to 
individual point clouds (see Fig. 2b; locations and detailed measure
ments can be found in the Supplementary Table 1). Considerations for 
selecting them were: 1) these were tall plane trees with DBH larger than 
30 cm so that they could grow a dense canopy; 2) they were planted 
along one single street, enabling efficient scans for having their leaf-on 
status; 3) plane trees are one of the most common urban trees in Euro
pean cities. Besides, the LAD estimation for P. x hispanica can be applied 
to other data of the same species in previous projects conducted by the 
authors (see section 2.5).

Based on these leaf-off scans, the selected 16 plane trees were 
scanned by the authors again with their leaves-on at the end of July 
2023 (see Fig. 2e) for this study. The scanner, settings, and processing 
method were identical to the previous leaf-off scans. The point clouds 
from individual scans were registered with RiSCAN Pro. The registration 
is in reference to the GPS coordinates of the scanning position recorded 

Fig. 1. The concept of associating the distribution of detectable branch structures in leaf-off scans with the distribution of leaves in leaf-on scans. a): a plane tree 
branch overlaid on plane grids as an example; b) occupancy of major woody structures that can be captured by TLS at its leaf-off state; c) the aim of predicting leaf 
distribution in the grids from the detectable woody structure.
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by Leica Zeno FLX100 with an accuracy of ca. 2 cm (Yazdi et al., 2024). 
In this approach, the point clouds of leaf-off and leaf-on scans are 
perfectly aligned in the global coordinate system (Wu, 2021). With a 
visual check of the overlapped leaf-on scans on the leaf-off scans, no 
mismatching is detected on stiff surfaces such as the pavement, building 
facades, and thick woody trunks. Afterward, the 16 individual trees were 
roughly cut out from the scene through a cloud-to-cloud distance filter in 
reference to the segmented trees in leaf-off scans using Cloudcompare 
(Girardeau-Montaut, 2023). The fine segmentation was adjusted on this 
base manually (see Fig. 2f).

2.2. Reconstruction of quantitative structural models (QSMs)

The point clouds of individual trees from leaf-off scans (see an 
example in Fig. 2b) were used for generating QSMs. QSM is a cylindrical 
representation of tree trunks and branches. It contains the tree’s typo
logical structure, such as the parent and children of each cylinder and its 
hierarchy order among all tree branches. Many open-source tools are 
developed for reconstructing the QSM out of a point cloud include 
PypeTree (Delagrange et al., 2014), SimpleTree (Hackenberg et al., 
2015), 3D forest (Trochta et al., 2017), treeQSM (Raumonen, 2022; 
Raumonen et al., 2013), Adtree (Du et al., 2019) and AdQSM (Fan et al., 
2020). Through primary testing of these tools on the collected data, it is 
noted that PypeTree, Adtree, and AdQSM have a high requirement for 
clarity of the point cloud. They use Dijkstra’s shortest path to create 
skeletons from the points at the crown top to the trunk base. Once the 
noise in the crown becomes slightly intense, this approach will “invent” 
fake twigs. SimpleTree embeds an outdated Qt library version, making it 
incompatible with later-developed methods. Therefore, treeQSM was 
chosen for QSM reconstruction. It breaks down the point cloud of a tree 
into patches of points following the Voronoi partition. Then, it fits the 
cylinders to those patches using the least square, and thus, it is a robust 
method on our dataset to describe the branching structure despite the 
uncleared noises.

The two parameters that decide the patch sizes are the most impor
tant settings in altering the quality of cylinder fitting in treeQSM, 
namely the minimum and maximum patch diameters. The smaller patch 
can capture more details in the twigs but is getting more sensitive to the 
gaps within the same branches due to occlusion. In our implementation, 

considering various twig sizes for urban trees, we require the minimum 
patch diameter to be calculated at 0.01, 0.02, and 0.03 m. Accordingly, 
the maximum patch diameter was required using 0.07 and 0.10 m due to 
thin or thick stems. The decisions of these settings follow the instructions 
in treeQSM’s manual book (Raumonen, 2022): firstly, the size of these 
patches should vary to balance the accuracy, memory consumption, and 
modeling time. More importantly, the branch segmentation is per
formed based on the connectivity of these patches. The bifurcations are 
identified as places where neighboring patches first disconnect. After
ward, the program fits cylinders to branches using the least squares 
fitting with a minimum surface coverage of 70 % for the stem and 40 % 
for the rest of the branches. QSMs will be generated using combinations 
of the required patch diameters for every tree to acquire the best-fitting 
result. Moreover, the random seeds for generating the patches impact 
the final performances. Therefore, the QSM reconstruction was also 
repeated 15 times for each patch diameter configuration on every tree to 
enhance their robustness against the impacts of pseudo-random 
numbers. Only the QSM with the minimum average point-cylinder dis
tance is selected as the final QSM. For such a heavy computational load, 
the program was run on a virtual machine equipped with Intel(R) Xeon 
(R) Gold 6148 CPU @ 2.40 GHz and 45 GB RAM parallelly in 10 VCPU 
cores. Following this approach, 16 QSMs were obtained representing the 
16 plane trees (see Fig. 2c).

2.3. Estimation of leaf area density

The point clouds of individual trees from leaf-on scans (see Fig. 2f) 
are used for estimating their leaf area density distributions (see Fig. 2g). 
To this purpose, several new methods have been developed in recent 
years using light transmittance (Mkaouar et al., 2019, 2021) and path 
length of the beam (Hu et al., 2018). However, the model VoxLAD 
(Béland et al., 2014), which uses straightforward ray tracing techniques, 
was implemented in this study because it has already been widely 
applied in various related studies (Dissegna et al., 2019; D. Wu et al., 
2018; Yin et al., 2022). Therefore, its performance has been checked 
using multiple data sources and scenes. The main principle of VoxLAD is 
the contact frequency of the LiDAR beam with foliage in a given voxel, 
taking into account the inclination angles of both the beam and the leaf 
surface concerning the voxel’s orientation (Béland et al., 2011). As a 

Fig. 2. An overview of the data source and the process to generate the voxel-based LAD prediction model using QSM. a) and e): Leaf-on and leaf-off scans of the same 
street in Munich using Riegl TLS. b) and f): Segmented point clouds for individual trees. c) QSM of trees using treeQSM on the leaf-off scans. g) LAD in voxels using 
VoxLAD on the leaf-on scans. d) Testing performances of different models.
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result, voxel size (Soma et al., 2018), leaf inclination angle distribution 
(Jiang et al., 2021), and precise segmentation between points of foliage 
and points of the woody elements are the most critical settings to ach
ieve reliable LAD estimations on TLS data.

2.3.1. Settings in VoxLAD
For the decision of the appropriate voxel size, it is shown in a pre

vious study that the overall accuracy is strongly reduced with the in
crease of the voxel size after 0.3 m (Wei et al., 2020). However, it should 
be noted that this deviation is also closely related to LAD itself. In the 
tests by Wei et al., the deviation of the LAD at voxel sizes of 0.5 m and 1 
m only becomes intensive for extremely dense foliage, where the LAD is 
higher than 3 m2/m3. LAD of common urban tree species’ leaf area 
density is mostly less than 0.5 m2/m3 (in reference to Asef et al. (2020)). 
Therefore, the deviation with a voxel size in the range between 0.5 and 
1.0 m is considered insignificant in our case. Soma et al. (2021) rec
ommended a 0.5m voxel size to balance the accuracy and correction 
opportunities. In our next step to extract QSM indexes related to the 
voxels (see section 2.4), the voxel size should not be too small (compared 
to an average cylinder length) to cause a bias in the allocation process. 
Based on these considerations, the voxel size was set to 0.8 m in our 
study, serving as a primary test. One advantage of this size is its flexi
bility in aligning perfectly to smaller voxels of 0.1, 0.2, and 0.4 m lengths 
using an octree. The influence of voxel size in the LAD prediction must 
be addressed in future studies (for a discussion, see section 4.3).

The inclination angle of a leaf describes the angle between the leaf 
surface normal and the zenith (Raabe et al., 2015). For the tree to ac
quire more exposure to the sunlight, it was observed that the inclination 
angle of leaves is not identical throughout the tree crown but follows 
species-specific distribution patterns (Wit, 1965). These patterns were 
further summarized into six theoretical categories: erectophile, ex
tremophile, plagiophile, planophile, spherical, and uniform (see i.e., Liu 
et al. (2019)). These categories were also taken as preset options in 
VoxLAD. Chianucci et al. (2018) measured leaf inclination angles for 
138 deciduous broadleaf tree species, including 101 P. x hispanica. Their 
measurements confirmed that the plane trees’ canopy should follow the 
plagiophile shape (see Fig. 3 left).

Besides the most critical settings in calculating LAD for each voxel by 
VoxLAD, there are some details to enhance the accuracy. First, the Rigel 
V-400i could capture numerous echoes of the pulses through the canopy. 
However, we kept only the first return in the point clouds for an accurate 
leaf area density calculation. Second, the points captured by different 
scanning positions were separated using an attribute named GPS time. It 
described the precise time when the points were captured. Our leaf-on 
scans took approx. 45 s each without interruption. The subsequent 
scan commenced at a minimum of one to 2 min after the initial pro
cedure due to the relocation of the vehicle and the subsequent exami
nation of the configurations. This allows the separation of captured 
points by different scanning positions to be very precise. Third, for 
calibrating the contact frequency errors, we also entered the ratio of the 

long axis by the short axis of a typical plane tree leaf as one and an 
average area of 314.16 cm2 per leaf into VoxLAD. These parameters 
were directly measured from a few clearly shown leaf samples in the 
point clouds. Next, the angle resolution was set to 0.03◦, the same as the 
scanner setting during the scanning. Lastly, VoxLAD outputs the esti
mated LAD from each scanning position separately. When the voxel was 
not visible from a scanning position, the LAD estimation was returned 
with zero. We took the average LAD values larger than zero from 
different scanning positions. This would further reduce the disturbances 
by the contact frequency error.

2.3.2. Point cloud segmentation for leaf and wood
In forestry studies, the segmentation between foliage and woody 

parts is mostly accomplished using trained machine-learning models 
(Krishna Moorthy et al., 2020), such as the open-source FSCT model 
(Krisanski et al., 2021) or TLS2trees (Wilkes et al., 2023). The limita
tions of these approaches are their robustness and adaptation to data 
that differs in its qualities or structures from the training dataset. 
Especially when our dataset deals with urban trees whose crown’s 
starting heights are lower and whose crown diameters are larger than 
those trees in dense forests. Therefore, the points lower than a typical 
forest tree’s height or those far from the trunk were mistakenly 
segmented into non-leaves with the trained FSCT model from Krisanski 
et al. (2021) (see Fig. 4 left). This will cause an overlook when calcu
lating the LAD in these areas. To acquire a more precise result in seg
menting the leaf and wood, we adopted an approach used by Kim et al. 
(2015) and Wang et al. (2018). They used the different intensities of 
foliage and woody surfaces to reflect laser beams to distinguish between 
them. The implementation of this approach is based on the Riegl V-Line 
LiDAR instruments, which record a so-called relative reflectivity (dB) 
value for each target echo. It is calibrated as the ratio of the actual op
tical amplitude versus the optical amplitude of a diffuse white target at 
the same range (Riegl, 2009). Derived from the equation given by Kim 
et al. (2015), we used equation (1) to transform the relative reflectance 
values into apparent reflectance (%) values. The separation between leaf 
and wood should be chosen at a threshold approximately midway of the 
highest values in the reflectance (Kim et al., 2015). For our tree sample 
(see Fig. 3 right), the maximum apparent reflectance value was 
approximately 0.7, and the threshold at half of it (0.35) was precisely 
where the number of returns in the leaf-on scans met the leaf-off scans 
on the same tree. This is why 0.35 was chosen to segment wood and leaf 
in this study. As the LAD calculation approach by Béland et al. (2011)
required the exclusion of the pulses that only partially hit a leaf, this 
could be solved with apparent reflectance as well by another threshold 
of 50 % of the nominal (spectrometer-measured) leaf reflectance value 
(Kim et al., 2015). In our data sample, the peak of the leaf returning 
numbers had an apparent reflectance at around 0.2. Based on this, we 
chose 0.1 as the threshold to separate noise (where the pulses only 
partially hit leaves) and leaves (where pulses mostly hit leaves). This 
threshold was also at a turning point where the number of laser returns 

Fig. 3. Left: Leaf Inclination Angle Distribution of P. x hispanica (data from Chianucci et al. (2018) in blue bar graphs) compared to the six theoretic inclination 
distribution categories. Right: Point segmentation using a comparison between apparent reflectance distributions in Leaf-on and off scans of one tree.

Q. Shu et al.                                                                                                                                                                                                                                     Science of Remote Sensing 12 (2025) 100246 

4 



climbed as the apparent reflectance went further up (see Fig. 3 right). 
Using this method above, we acquired the precise labeled point clouds 
regarding leaf, wood, and noise (see Fig. 4 right) for predicting LAD with 
the approach by Béland et al. (2011). 

Apparent Reflectance=10
−

⃒
⃒
⃒
⃒
Relative Reflectivity (dB)

10

⃒
⃒
⃒
⃒

(1) 

2.3.3. Use of partial canopy data for estimation
Due to scanning limitations and potential occultation effects, only 

the street-facing half of each tree canopy was used for LAD estimation. 
The estimated LAD of one tree with a voxel size of 0.8 m is illustrated in 
Fig. 5. The complete dataset can be found in the supplementary data 
files. All the trees are on one side of the street, close to a building. This 
resulted in all eight scanning positions on the northeast side of the crown 
only (see Fig. 5a). As seen in Fig. 5b and c, the back side of the canopy 
was estimated to have a much lower LAD than the front side. We could 
not analyze if the causes of this result were 1) intensive occultation, 2) 
the fact that the canopy grew less dense facing the building façade, or 3) 
a mix of both factors. To ensure a better LAD prediction model, we took 
up only the data from voxels facing the street to later steps. These voxels 
were filtered by a line parallel to the street (at around 135◦ to the east 
direction) through the location of each tree stem. Only voxels whose 
center was on the line’s northeast side were considered as validated LAD 
estimations (see selected voxels within the rectangular boxes of the 

dotted line in Fig. 5b and c). These validated voxels are less affected by 
occultations, like the scanning at the nursery used for performance 
evaluation (see section 3.3). In contrast, the voxels facing the building 
deviate significantly from nursery trees in light conditions, etc. The 
data’s final formatting and VoxLAD execution were conducted in 
MATLAB R2023b (The MathWorks Inc, 2024).

2.4. Extraction of QSM indexes for regression models

Following the preceding steps, LAD is estimated for each voxel 
independently and is not yet associated with individual cylinders in the 
QSM. To merge this gap, a novel QSM Index system was created in our 
study to extract certain information contained in QSM to voxel-based 
attributes. The QSMs originated from leaf-off scans (see section 2.2). 
Specifically, we first assign each cylinder of a QSM to the voxel that 
contains most of the cylinder’s length (see Fig. 6b). In the imple
mentation, this was calculated using the two ends and the middle point 
of the cylinder as sample points. This cylinder was allocated to one voxel 
if more than two of these three points were inside this voxel.

Then, the same method was repeated to allocate cylinders to a 
boundary box larger than the voxel. This way, we could understand the 
branch distribution (especially their numbers and sizes) in a larger 
context. To achieve this, we defined two cubic boundaries: one box with 
3 times the length of the voxel (2.4 m, see Fig. 6c); 2) the other box with 
5 times the length of the voxel (4.0 m, see Fig. 6d). They are named 3- 

Fig. 4. Comparison of two segmentation effects on our dataset. Left: Segmentation of leaf and wood using FSCT (Krisanski et al., 2021). Right: segmentation of noise, 
leaf, and wood points using their apparent reflectance.

Fig. 5. Illustration of the LAD estimation by VoxLAD (Béland et al., 2011). a) A zoom-in section of the point cloud, where scan positions are only one-sided to trees 
while the building façade is on the other side. b) LAD voxels in the master plan view. c) LAD voxels in a section perpendicular to the street. The numbers are larger on 
the street side. d) The LAD voxels in 3D.
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voxel buffer box and 5-voxel buffer box respectively in the following 
texts. These two buffer boxes captured cylinders in close- and far-range 
surroundings. As the leaves are expected to be denser at the outer side of 
the crown than the crown center (see Fig. 5c), the assumption is that the 
statistics of cylinder distributions in the surroundings, especially the 5- 
voxel buffer box, can better reflect the relative position of this voxel to 
the overall crown. The necessity of the two buffer boxes is discussed in 
section 4.3.

For each voxel of a tree, we extracted 138 indexes named QSM index 
to describe features of the cylinder distribution within the voxel itself 
and its 3- and 5-voxel buffer boxes. These indexes were features of the 
cylinders’ number, length, radius, volume, and direction. These indexes 
also described their branch order, position in their branch, distance, and 
relative pitch direction from the voxel center. The complete list of these 
QSM indexes is explained in Supplementary Table 2. Pearson correla
tions of these indexes on our dataset are illustrated in Supplementary 
Fig. 1. The raw data is available in the supplementary data files.

The 16 trees consist of 76 560 voxels in total. Each voxel has 138 
QSM indexes used as the features, and its estimated LAD was the target. 
The whole dataset was randomly split into a training set and a testing set 

with a testing rate 0.2. We tested the performances of 12 standard 
regression models with sklearn in their default settings, including linear 
regression and support vector regression (Pedregosa et al., 2011) (see 
Supplementary Table 3). The model with the highest R-squared scores is 
selected as the final prediction model.

2.5. Application of the trained model

Given any leaf-off scans of a tree, a similar process can be followed to 
generate a voxel grid space in a defined boundary box and its QSM in
dexes for each voxel. In our study, this boundary box was always 
expanded 3 m in all six directions along the x, y, and z axis from the 
furthest outreach of the tree’s branches. With QSM indexes of every 
voxel, its LAD value can be predicted using the trained regression 
models.

As a by-product, the LAI values in pixels on the floor plan are the sum 
of LAD values for voxels with the same x and y coordinates. The 
calculation is written in equation (2) (Rouzbeh Kargar et al., 2019), 
where h is the total height of the voxel space. Z is the coordinate in the 
z-axis of the voxel center. It helps visualize the LAD results in 2D grid 

Fig. 6. An example of allocating cylinders to voxels. a) All voxels of one tree. b) Take one voxel as an example. It contains a few branches within the cube of 0.8 m in 
length for each side. c) Its 3-voxel buffer box is 2.4 m long for each side. d) Its 5-voxel buffer box is a cube with a side length of 4.0 m.

Fig. 7. The trained prediction model was applied to 13 younger plane trees in a nursery with 3 different sizes. Hemisphere Images were used to measure their LAI 
values in the summer.
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maps (see Fig. 7h and Supplementary Figs. 3 and 4). 

LAI=
∑h

zi=0
LAD(zi) (2) 

The trained model was further applied to predict LAD for other 13 
P. x hispanica trees grown at Bruns Nursery close to Bremen (Northern 
Germany). These trees were grown in three fields (see Fig. 7a) and 
showed different ages, branch sizes, densities, etc. They were scanned 
with Riegl VZ-400i at the end of January 2023 in their leaf-off status. 
They were segmented manually and denoised with a SOR filter (Park 
et al., 2020) (see Fig. 7b). Their QSM indexes were extracted from QSMs 
to predict their LAD values in voxels (see Fig. 7c and d). The voxel size 
was kept the same (0.8 m) as the data used for the training prediction 
model.

To compare this LAI calculated from our prediction model with other 
methods, LAI measurement was conducted in June 2023 for a series of 
nursery trees with two hemisphere images beneath every tree crown (see 
Fig. 7e). A Nikon D7500 was used with a fisheye lens of brand Sigma. 
The fisheye lens enables pictures at 180◦ degrees so that the tree crowns 
are visible with their full extension in the picture. These hemisphere 
images were processed with the software WinSCANOPY Pro 2019a 
(Regens Instruments, Canada) based on the process of pixel classifica
tion (see Fig. 7f). We used the function “LAI2000Glog” for LAI calcula
tion to differentiate sky and leaf area. Based on these, a single LAI value 
was calculated for each tree (see Fig. 7g and Supplementary Table 5).

3. Results

3.1. Model performances and the most important features in LAD 
prediction

The performance of a regression model can be evaluated with R- 
squared scores, mean absolute errors (MAE), and mean squared errors 
(MSE). The scores of the tested 12 models can be found in Supplemen
tary Table 3. Among them, the Decision Tree Regressor, Support Vector 
Regression, and Ada Boost Regressor exhibited a negative R-squared 
value, showing a suboptimal performance for this task. In contrast, the 
performance indicators of the remaining 9 regression models are pre
sented in Fig. 8 in ascending order of performance. The Hist Gradient 
Boosting Regressor (HGBR) offered the most accurate predictions with 
an R-squared score of 0.56. The MAE and MSE were 0.0187 (m2/m3) and 

0.0029 respectively. Compared to average non-zero LAD values of 
0.1145 m2/m3, the mean absolute error is around 16.33 %.

The HGBR model’s most effective QSM index to predict the voxel- 
based LAD was the total cylinder number contained by the 3-voxel 
buffer box (see Fig. 9 left). It contributed around 50 % to the predic
tion accuracy according to its permutation importance. It is positively 
related to the predicted LAD, but a direct linear relation between these 
two factors is weak (see Fig. 9 right). The second most influential QSM 
index was followed by the average height difference from the voxel 
center to the cylinders’ starting locations within the 3-voxel buffer box. 
Its contribution was around 20 %. In addition, the other three QSM 
Indexes contribute more than 10 % to the accuracy of the prediction (see 
Fig. 9 left). They are the average branch length in the 5-voxel buffer box, 
the total cylinder volume in the 3-voxel buffer box, and the maximum 
position sequence of the cylinders in their branches within the 5-voxel 
buffer box. In all QSM indexes, most of the effective features described 
the cylinder distribution within their surrounding buffered boxes (see 
index name in Fig. 9 left ending with “2” or “3”). Regarding the cylinders 
directly contained by the core voxel itself, only the average z direction 
from the voxel center to the starting locations made into top 10. It 
contributed around 2 % to the accuracy of the prediction.

3.2. Predicted LAD in voxels compared to the leaf-on scans

The spatial distribution of the LAD prediction was analyzed con
cerning height and distances to the trunk position (see Fig. 10).

The street trees in our dataset are unlike typical forest trees that 
compete intensively for light. Therefore, the captured plane trees do not 
grow dense crowns at the treetop. As the blue curves show, the highest 
density area in the canopy was around 4 m above the ground (see Fig. 10
left). This height was approximately 2 m higher than the crown’s starts. 
LAD and leaf area decrease as the height increases up to the treetop. The 
predicted results also show these features (see the orange line). How
ever, between the 3–15 m height, the predictions are slightly larger than 
the data from the training dataset.

Regarding the relation between LAD in voxels and their distances to 
the trunk (see Fig. 10 right), these scanned trees have an average crown 
radius of around 7 m. In the measured data by VoxLAD (see the blue 
line), the average LAD went below 0.02 m2/m3 beyond this distance to 
the trunk. Meanwhile, the LAD reached its peak of 0.08 m2/m3 at a 3.5- 
m distance (half of the crown radius) to the trunks. The overall trend of 

Fig. 8. Performance of 9 regression models to predict LAD based on QSM indexes.
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Fig. 9. Left: The 10 most important QSM indexes in LAD prediction using the Hist Gradient Boosting Regressor. The explanations for these index names are in 
Supplementary Table 2. Right: A scatter plot of the predicted LAD values in a testing dataset concerning the total cylinder numbers within a 3-voxel buffer box.

Fig. 10. Leaf Area and LAD distribution concerning the tree height and distance to the trunk.

Fig. 11. Tree heights, DBH, crown start height, and crown radius of the 13 plane trees from the nursery. They were kept in three categories by their fields.
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the LAD changes at different distances to the trunk is also well addressed 
in the predictions (see the orange line). However, from the center of the 
trunk until the peak of the LAD, the HGBR model always predicts 
roughly 20 % higher than the measured values.

3.3. Predictions on nursery trees in different sizes

To keep the clarity of different tree sizes, they were categorized by 
their fields (see Fig. 11): five trees from field 1 have a height of around 
11 m and DBHs in ca. 18 cm; three trees from field 2 have a height of 10 
m and DBHs of ca. 20 cm; five trees from field 3 have their heights of 
around 7.5 m and DBHs of ca. 9 cm. Their detailed measurements can be 
found in Supplementary Table 4.

To calculate the distributions of average leaf area per tree at different 
heights (see Fig. 12 left), the LAD values were multiplied by the volume 
of each voxel (0.512 m3). For Munich Street trees, the validated voxels 
only came from the northeast side of the canopy facing the scanning 
positions. So, the leaf area shown with the red line in Fig. 12 left is only 
roughly half of the canopy.

In the LAD prediction of the 13 nursery trees, a similar distribution 
pattern to the Munich trees was also seen (see the blue, yellow, and 
green lines in Fig. 12). This indicated that the trained HGBR has learned 
the relation between LAD and branch distribution, instead of an absolute 
spatial location. In addition, their LAD distribution curves ran parallel 
through different heights. This was probably owing to the standardized 
maintenance in the nursery, causing their crown shapes to be scalable to 
different sizes. The crown shapes and branch densities of nursery trees 
differed from the street trees. So, the LAD curve had a different slope. 
This result showed the potential of this HGBR model in predicting the 
LAD of trees in an untrained crown shape and branch configuration.

An inaccuracy was noticed, where LAD outside the crowns was 
reduced slowly to 0.02 m2/m3 instead of approaching 0. This inaccu
rately indicated that the voxel length of 0.8 m or the sizes of the sur
rounding boxes did not suit those smaller trees with crown diameters of 
3–6 m. At least, a sharp crown edge could not be acquired by this trained 
HGBR model.

Finally, the LAI values by summing up the LAD voxels by the HGBR 
model were compared with the ones by hemisphere images (see Fig. 13). 
Overall, the LAI by the HGBR model was smaller for younger trees in 
fields 3 and 1, whose DBH is much smaller than the Munich trees. This 
indicates again the limitation of adapting the prediction model to 

different tree crown sizes. However, the average LAI by HGBR in field 2, 
whose DBH was ca. 20 cm, achieved very close LAI values by the 
hemispherical photographs, barely 0.12 m2/m2 (9.57 %) higher.

4. Discussion

In a summary of the results above, the MAE and R2-score of the HGB 
Regression Model showed a good capability of this model from a sta
tistical perspective. The predicted values were aligned with LAD ranges 
of urban trees in other studies (i.e., Alonzo et al. (2015); Hosoi et al. 
(2013); Soma et al. (2021)). The most effective variables among QSM 
indexes in our prediction model are the cylinder numbers and the 
average height difference of the cylinder starting to the voxel center 
within its 3-voxel buffer box. In our common sense, these factors are also 
closely related to the positions of the leaf growth.

In a closer look at the predicted LAD values, their distributions were 
also logical. As Fig. 10 shows, they followed precisely how the LAD 
changes concerning the tree height and distance to the trunk. The crown 
core center was the only crown area where the prediction became less 
precise. The branches were dense in this area, but the leaf density was 
low, even though the deviation was kept within 20 %.

Based on these analyses, we consider HGBR capable of predicting 
LAD in voxels based on the QSM. Nevertheless, the limitations and 
transferability of this model to other cases are discussed below.

4.1. Implementing VoxLAD to estimate voxel-based LAD from multiple 
scans

Using VoxLAD to estimate the LAD of trees, former studies mainly 
focused on only one tree sample and made at least 4 scans from all sides 
(Wei et al., 2020; D. Wu et al., 2018). To find statistical patterns between 
QSMs and predicted LAD, our study requires a larger number of trees in 
the TLS scan. We utilized an existing database (Yazdi et al., 2024) to 
balance the workload and added leaf-on scans on this base. One short
coming of this dataset was the restrained access for LiDAR scanning from 
all sides of the street trees. Therefore, the limitations in VoxLAD using 
only one-sided scans along linear street trees are worth deeper analysis 
and validation in future studies.

Fig. 12. Comparison between predicted LAD distributions on the younger trees at the nursery and street trees in Munich. Left: Average leaf area per tree in square 
meters at different heights. Middle: Average leaf area density per cubic meter at different heights. Right: Average leaf area density per cubic meter at different 
distances to the trunk.
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4.2. Limited accuracy on twigs in QSMs

For reconstructing QSMs out of point clouds, the radius, conse
quently the volume of the most thin twigs and branches, can be over
estimated up to over 50 % (Bornand et al., 2023; Demol et al., 2022). 
Such deviation is assumed to be higher at the upper part of the crowns 
than the lower crown because 1) their distances to the scanners were 
more considerable; 2) the thinner branches have a higher chance to 
swing in the wind. However, this difference in the deviation has not been 
calibrated. It can cause fewer clear differences in cylinder radius be
tween young shoots and older branches. This may have prevented the 
regression models from gaining an even higher performance.

4.3. Impact of the voxel size and the buffer boxes on the performance

In both estimating the voxel-based LAD and abstracting the QSM 
index, the voxel size was the most crucial variable that could affect the 
precision and performance of this method. The voxel size tested in this 
study was only 0.8 m in each length. The tested buffer boxes were fixed 
to 3- and 5-times the voxel length. The size of the buffer boxes does not 
need to be an integer multiple of the voxel side length.

In the application to nursery trees (see section 3.3), it was noticed 
that this chosen scale was oversized for the younger trees with a crown 
radius of 1–3 m. The consequence was an inaccuracy at the edge of the 
crown, where the predicted LAD was not sharply reduced to zero. 
Smaller voxels would require much more computing resources and take 
more extensive storage, thus not being tested yet in this study.

The authors tested to train an HGBR model without the 5-voxel 
buffer box. However, the r-squared score was sharply reduced to 0.43. 
Although this buffer box of 4 m in length seemed oversized in a common 
first visual impression, it proved helpful in improving the prediction 
accuracy.

In addition, the complexity of this problem lies not only in adjusting 

the single voxel size but also in its relative size to the tree’s crown, leaf 
shape, and leaf size, as well as the average distance between tree 
branches. These parameters would vary by species and their age. It was 
also challenging to explore combinations of a proper voxel size with a 
best-fitting buffer box to include the most effective cylinders in their 
surroundings. These were areas that required further experiments.

4.4. The overestimation at the crown center

This deviation and problems of less precise estimations in the crown 
center are common problems in estimating leaf area, LAD or LAI with all 
the other indirect methods, such as scanning with terrestrial or airborne 
scanners (Slavík et al., 2020; Viña et al., 2011; Xing et al., 2016), 
hemispherical imagery (Fuentes et al., 2008; Z. Liu et al., 2015), 
LAI2000 or LAI2200 (Behera et al., 2010; Poblete-Echeverría et al., 
2015) or with a smartphone (Confalonieri et al., 2013). This difference is 
mainly related to clumping branches and leaves in the crown (Weiss 
et al., 2004) and the measurement of light transmission through the 
crown (Poblete-Echeverría et al., 2015).

Indeed, those branches at the crown center do not grow many leaves 
on them. We explored possibilities to bypass this problem by Eliminating 
cylinders with small branch orders. Cylinders with branch order 0 are 
the main stem. Cylinders with branch order 1 are primary branches, and 
so on. Specifically, we trained HGBR models using QSM indexes of 
cylinders with branch orders larger than 3, 5, and 7, respectively. In our 
experiments, removing cylinders until a higher branch order will reduce 
the r-squared score (see Supplementary Fig. 5). Although the predicted 
LAD peak at the crown center will be reduced (see Supplementary 
Fig. 6), these predictions do not necessarily shift more precisely to the 
reference values. So, our primary tests could not support eliminating 
low-branch-ordered cylinders to solve the overestimation problem.

Fig. 13. Deviation of the average LAI calculations between the HGBR model and the hemisphere images. The trees were listed in ascending order according to their 
DBH from left to right.
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4.5. About the calculated LAI values by hemispherical images

Admittedly, the most accurate way of understanding the index of 
leaves, such as LAD and LAI, is still to collect real leaves. However, this 
approach is not commonly conducted in forestry studies owing to its 
high labor demands, difficulties in practical implementation, and 
destructiveness (Alonzo et al., 2015; Chianucci et al., 2015). Therefore, 
digital photography has become popular for estimating LAI and leaf area 
in urban trees due to its simple, fast, and cost-effective procedures 
(Chianucci et al., 2015; Peper and McPherson, 1998). However, the 
analysis process is based on classifying pixels in the crown and sky, 
which highly depends on the light regime. In urban areas, structures like 
buildings are ignored and must be manually covered. Slight differences 
in cutting the edge of the crown could cause significant variance in the 
results. This could lead to a strong over- or underestimation of the 
resulting LAI values.

Despite limitations in LAI calculations by hemispherical photo
graphs, Plane trees are known as sparsely foliated trees. They often don’t 
have high LAI values. The predicted LAI values, mostly ranging between 
1.2 and 2 m2/m2, were comparable with LAI for Plane trees measured by 
other researchers (Alonzo et al., 2015). Especially for individual trees in 
urban areas, these methods, typically applied in forestry, like the 
hemispherical imagery, were even criticized by Zhang et al. (2023). TLS 
methods, such as VoxLAD, used in this paper could be more likely to 
provide accurate data.

Still, all indirect methods, including our approach, should undergo a 
calibration process to reduce the error in the measurement approach. 
Although tedious and labor-intensive, direct measurements by leaf 
sampling and leaf area measurement (Zhang et al., 2023) can help to 
reduce the error in measuring leaf area and density.

5. Conclusion

Derived from the detailed TLS scans of trees, existing methods can 
extract geometrical and topological information from tree branches in 
the form of quantitative structure models (Raumonen et al., 2013) and 
leaf density distribution in the form of voxels (Béland et al., 2011). 
Together, they complete the critical data of a tree above the ground to 
analyze its function and growth (Shu et al., 2022). These data for de
ciduous trees must be collected separately during their leaf-on and 
leaf-off seasons, leading to a substantial workload and redundant data 
collection. Additionally, due to current technical limitations, TLS cannot 
capture every fine twig that connects to individual leaves in the leaf-off 
state and many other features (i.e. bark and nodes) are overlooked in 
QSMs. Inspired by the research using branch geometry described by the 
L-system to simulate the Leaf Area Density of virtual tree crowns (Jin 
and Tamura, 2012), this study aimed to explore the feasibility of using 
QSMs to predict the voxel-based LAD of real trees.

Leaf-on and leaf-off TLS of 16 P. x hispanica (around 20 m in height) 
standing on one street were used for this primary study. Their QSMs 
were extracted from leaf-off scans using treeQSM, while VoxLAD was 
applied to leaf-on scans to estimate their LADs. We novelly interpreted 
QSMs into QSM indexes to link these two data types, which associate 
cylinder distributions to voxels. The principle was to allocate cylinders 
to the voxels if they were directly contained in the voxel or if they were 
within a defined surrounding space. Then, the statistics of these cylin
ders, such as their length, radius, volume, relative positions to the voxel 
center, and so on, are composed of the QSM indexes. In this primary 
study, we set the voxel length to 0.8 m for a primary test. A close and far 
range of surrounding spaces was defined using boundary boxes of 3 and 
5 times the voxel length, respectively. 12 standard regression models 
were tested to predict the LAD value for each voxel using its QSM in
dexes. Among them, the Hist Gradient Boosting Regressor performed the 
best. In this regression model, the total cylinder number and the average 
height differences from the voxel center to the cylinder start within this 
voxel’s close-range surrounding space (2.4 m in length), contributing to 

more than 70 % predicting accuracy. Its R-squared score was 0.56, and 
the mean absolute error in the LAD prediction was 0.0187 m2/m3, being 
16.33 % of the average LAD values in non-zero voxels. The major de
viation only occurred at the center of the crown, where the branches 
were dense while the leaves were few.

With these results from our preliminary tests, this study has illus
trated the potential of the novel QSM indexes in predicting voxel-based 
LAD using QSM. This trained model has been applied to plane trees of 
various sizes at a nursery. The predicted LAD was mapped on the ground 
to LAI maps. The average LAI for the trees with the largest DBH, the 
closet size of the street trees in Munich, has achieved a small difference 
of only 0.12 m2/m2 (9.57 %) to the LAI values measured by hemi
spherical photographs.

Further experiments will enhance our understanding regarding how 
far this model could adapt to trees with various sizes and crown shapes. 
Determining how the voxel size should adapt to different species with 
various crown shapes, branch densities, and leaf areas remains 
challenging.
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