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A B S T R A C T

In urban forestry, managing trees is crucial for sustainable urban environments, especially in the context of 
climate change and the urban heat island effect. This research explores the complex dynamics of tree crown 
geometry development by asking the question: how do surrounding objects, such as nearby trees, buildings, and 
other urban structures, affect the shape of tree crowns? It aims to uncover how competition for light and space 
influences tree crown development in competitive urban environments. Our study employs machine learning 
models on six main species in Munich, using the measured data from the LiDAR scans, with the Hist Gradient 
Boosting Regressor (HGBR) emerging as the most promising performer across various metrics. Notably, the 
evaluation of 13 models reveals the HGBR’s consistent ranking as the best or second-best across all tree crown 
dimensions assessed, with R2 values reaching 0.83 for the tree height model and 0.7 on average for crown ra-
diuses in eight directions. Employing SHapley Additive exPlanations (SHAP) values elucidate factors influencing 
model predictions, emphasising the significant impact of adjacent trees and buildings. After evaluating the 
models to include additional tree species in Munich, the models show strong predictive capabilities for some 
additional species. Despite the studies’ limitations - the models are only valid for selected species, and there are 
constraints in predicting tree crown start height - our findings contribute valuable insights for urban forestry 
management and planning.

1. Introduction

The management of urban trees has become a challenging task in 
recent decades, as it involves finding the right species for the right 
location for planting and caring for the trees so that they survive on site 
and provide sufficient ecosystem services for a healthy and livable urban 
climate (Young, 2010; McPherson and Peper, 2012; Endreny, 2018). 
Particularly with regard to ongoing climate change and the urban heat 
island effect, urban trees are an important, sustainable component for 
climate adaptation and mitigation in cities Ramyar et al. (2021). As 
Berglihn and Gómez-Baggethun (2021) stated, urban trees play a crucial 
role in defining a sense of place, maintaining environmental quality and 
improving well-being in and around the places where most people now 
live FAO (2018).

The urban environment is a complex system with multifunctional 
green, grey and blue structures. Thus, urban trees are often named urban 
green infrastructures, as they provide a wide range of ecosystem services 
MEA (2005). Urban trees especially are increasingly recognised for their 

use in cities due to their multiple ecological and social benefits Li et al. 
(2017), air purification through pollutant filtering McDonald et al. 
(2018), temperature regulation through cooling by shading and by 
transpiration (Zhang et al., 2022; Morakinyo et al., 2018; McPherson 
et al., 2018; Kroeger et al., 2018), run-off reduction Rahman et al. 
(2023), noise buffering, promotion of biodiversity Clucas et al. (2018)
and recreational effects Korkou et al. (2023).

The tree canopy provides many of these ecosystem services, espe-
cially by the crowns of individual trees Franceschi et al. (2022). The 
geometry of tree crowns plays a central role in determining the extent of 
these services. Canopy structure, canopy density and canopy size have a 
direct impact on improving the local climate, e.g. the effect of trees in 
providing shade and cooling by transpiration or reducing solar radiation 
is strongly related to the shape and density of the canopy and the overall 
structure of the trees (Franceschi et al., 2022; Zhu et al., 2021; Shahidan 
and Jones, 2008). In addition, tree canopies influence wind dynamics 
and are the primary source of habitat provision. Understanding the 
nuances of tree growth and canopy geometry is essential for sustainable 
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urban planning and design Yazdi et al. (2023).
Research on urban tree allometries such as (Moser-Reischl et al., 

2019; Pretzsch et al., 2015; Yang et al., 2023) estimate the crown vol-
ume based on the crown shape of a cylinder. However, as Franceschi 
et al. (2022) showed, this under- or overestimates the crown volume of 
many tree species tremendously (up to 87 %), which also affects the 
estimation of the provided ecosystem services of a tree. As the study 
found out, spherical crown shapes of urban trees provide the greatest 
shade, while ovoid crown shapes provide the highest shade density 
Franceschi et al. (2022). Moreover, the crown shape of a tree can even 
vary over the lifetime of a tree, depending on its age.

Thus, changes in canopy volume and shape can directly affect the 
extent to which ecosystem services are provided. Canopy variables, 
especially the crown volume, are often applied as proxies for estimating 
leaf area, shade provision, transpiration and filtration of fine particles. 
Crown volume is one of the most important variables to calculate the 
cooling efficiency of trees Gratani and Varone (2006). Therefore, the 
precise calculation of a tree’s crown volume is an important prerequisite 
for accurately estimating such growth parameters and ecosystem ser-
vices in planning and modelling approaches for urban planners and 
foresters alike Zhu et al. (2021). The crown volume is regarded as a 
significant variable among crown characteristics when aiming to 
enhance the credibility of empirical models, such as those concerning 
growth and yield, and to evaluate the dynamics of forests Bragg (2001).

The development of space occupancy over time is significant for 
green space planning, i.e. what size a tree will be in a certain period after 
planting Franceschi et al. (2022). Depending on the tree species, this can 
vary significantly Pretzsch et al. (2012). In addition, the changing pre-
cipitation absorption with increasing tree size (and thus plant surface 
area) must be taken into account, as this leads to changes in the water 
balance of a tree (e.g. Baptista et al., 2018), affecting the tree growth and 
allocation patterns Rötzer et al. (2019).

However, the formation and shape of a tree crown depends not only 
on the species and age but also on its direct surroundings like light and 
space competition by other trees, adjacent buildings, pruning for safety 
reasons or traffic issues and cable connections Pretzsch et al. (2015). The 
complex relationship between trees and their surroundings, especially 
the geometry of their crowns, is therefore of particular importance for 
shaping the city’s urban image and thermal comfort.

This research paper delves into the development of tree crown ge-
ometry, unravelling its crucial role in enhancing the urban environment. 
It also addresses the existing gaps in the interactions between trees and 
their urban context. While previous studies have primarily focused on 
elucidating light competition between trees in forest stands (Kanjevac 
et al., 2021; Pretzsch, 2022), the effects of light competition on tree 
crown geometry between buildings and urban trees, as well as urban 
tree to urban tree, have been overlooked. This comprehensive study on 
the interrelationship of trees and the complex dynamics between trees 
and their surrounding structures is, therefore, an important topic in 
urban planning. Despite advances in urban forestry research, the pre-
diction of growth and crown geometry of trees competing with each 
other or with anthropogenic objects still needs to be improved. By 
investigating these issues, this research aims to provide valuable insights 
into urban forestry and provide a basis for informed decision-making in 
urban planning and the management of urban green spaces.

This study attempts to close these gaps by answering the following 
research questions:

• What is the efficacy of machine learning techniques in forecasting 
the urban tree crown geometry development?

• In an urban environment characterised by competition with other 
trees and the surrounding buildings, which features of the sur-
rounding trees and buildings have the most significant impact on the 
development of tree crowns, and how can these features be quanti-
fied and integrated into predictive models?

• To what extent can machine learning models trained on specific tree 
species accurately predict crown geometry for species for which the 
models have not been trained?

• How does the predictive performance of a crown geometry devel-
opment model, trained on data from a specific urban environment, 
vary when applied to the same tree species in different urban envi-
ronments and climate conditions?

2. Methods

To predict tree crown geometry, we developed TreeML, a data- 
driven machine learning approach that leverages an ensemble of ten 
distinct regression models. Throughout this discussion, we will refer to 
this novel method as TreeML. These models can forecast tree height, tree 
crown start, and tree crown radius in eight directions. By combining 
these predicted measures, a rough visualisation of the tree crown ge-
ometry in relation to nearby objects can be achieved. Alongside these 
models, TreeML incorporates three additional ones for predicting the 
maximum crown diameter, crown projection area, and total woody 
volume of trees. These supplementary models contribute to more precise 
calculations of tree growth biomass and ecosystem services.

Creating a valuable and precise dataset is crucial in developing 
machine learning models. For this purpose, we utilised TreeML-Data, an 
accurate open-source urban tree dataset Yazdi et al. (2024). Subse-
quently, a model for measuring distance and height was developed to 
enhance the dataset with accurate geometry data for surrounding ob-
jects. Following this, the data was prepared, and several new features 
were added to aid the models in understanding the local geometry 
around the trees. Finally, the data was trained and tested using 16 
different regression machine learning models to compare results and 
select the most effective model.

2.1. TreeML-data

TreeML-Data Yazdi et al. (2024) serves as this study’s foundational 
material, offering an urban tree dataset. Comprising labelled point 
clouds from 40 urban scanning projects on streets in Munich, Germany, 
the dataset includes 3755 point clouds specific to individual trees during 
winter (without leaves). It encompasses quantitative structure models 
(QSM), detailed tree structure measurements, and tree graph structure 
models corresponding to trees in these urban settings.

For this study, we utilised the tree structure measurement data 
within TreeML-Data. This dataset includes comprehensive tree structure 
information, such as TreeID, botanical name, Diameter at Breast height 
(DBH) (m), tree height (m), crown start height (m), maximum crown 
diameter (m), crown projection area (m2), and total volume (L). Addi-
tionally, the dataset features crown radius (m) in 72 different directions 
(crown radius definition is the maximum distance of the crown to the 
trunk location in a plan view - see Fig. 2), spaced every five degrees. 
While the dataset encompasses various species with different sample 
sizes, our focus was on six main species during the training step to ensure 
an adequate sample representation: ‘Tilia cordata’ (837 samples), ‘Acer 
platanoides’ (742 samples), ‘Platanus x hispanica’ (528 samples), ‘Robinia 
pseudoacacia’ (509 samples), ‘Populus nigra var. italica’ (297 samples), 
and ‘Aesculus hippocastanum’ (256 samples). In total, the dataset com-
prises 3169 tree samples of different species, featuring 80 structural 
measurement features (eight main measurements and 72 crown 
radiuses).

Additionally, alongside the tabular tree structure measurement data, 
the study incorporates tree and building point clouds from TreeML-Data. 
These point clouds, categorised in three classes (building, tree, other), 
are utilised parallel to the tabular dataset to integrate the features of 
surrounding objects into the training dataset (see section 2.2).
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2.2. Surrounding objects’ distance and height measurement

To train a prediction model and examine the impact of surrounding 
objects on tree crown geometry development, we require information 
regarding the geometry of these surrounding objects. Consequently, we 
developed a Python script code specifically designed to measure the 
distance and height of the surrounding objects in proximity to the tree. 
This tool necessitates knowledge of the tree’s location and the point 
clouds of nearby buildings and trees to extract these measurements. 
Illustrated in Fig. 1, the tool gauges the distance to buildings and trees in 
each 5-degree interval (across 72 directions) and their respective heights 
in these directions. Moreover, this measurement is repeated for sur-
rounding trees. Ultimately, this process adds 288 new features (col-
umns) to our dataset, including disAdjacentBuilding (m), 
heightAdjacentBuilding (m), disAdjacentTree (m), and height-
AdjacentTree (m) across 72 directions (each 5 degrees).

2.3. Data preparation and preprocessing

In the initial step of data preparation, we randomly set aside 20 % of 
the data as the test dataset. This was done before applying any 
augmentation methods or increasing the dataset size. The purpose of this 
step is to ensure that model evaluation occurs on data that the model has 
not encountered before. Subsequently, data augmentation and pre-
processing were applied to both the training and test datasets.

To increase the accuracy of the training models on the crown ge-
ometry, we increased the dataset dimensionally by utilising the novel 
data augmentation method on the TreeML-Data. Data augmentation can 
be characterised as a technique to reduce overfitting and increase the 
dataset size Maharana et al. (2022). In addition to the dimensional 
increment, we focused on eight main directions (N, W, S, E, NW, SW, SE, 
NE) to reduce the required training models for visualising the crown 
geometry. An augmentation method was employed in the preprocessing 
steps of machine learning to increase the dataset’s size dimensionally. 
Each tree in the dataset was duplicated nine times, and measurements 
for each main direction were used from − 20∘ to + 20∘ (refer to Fig. 2). 

For instance, in the east direction, all measurements from S + 70∘ to E +
20∘ were considered part of the East direction for crown radius and 
surrounding object measurements. This augmentation method increased 
the dataset size by a factor of nine, resulting in 28,521 samples. This 
augmentation benefits the training of machine learning models with 
larger datasets. Consequently, the dataset’s 360 features (crownRadius 
(m), disAdjacentBuilding (m), heightAdjacentBuilding (m), dis-
AdjacentTree (m), and heightAdjacentTree (m) in 72 directions) were 
reduced to 40 features for just the eight main geographical directions.

Drawing from research on urban tree allometries Fauk and Schneider 
(2023) and existing datasets of urban tree measurements Rötzer et al. 
(2021), we developed double logarithmic equations to approximate the 
tree structures of primary species in Munich. The equation, ln(y) = a + b 
* ln(DBH), where y represents tree height, crown diameter, or crown 
start height, was fitted to the data. Table 1 displays the values of a and b 
for each equation across various species. The table 1 also includes the 
Relative Standard Error (RSE) (see equation (1)) and R2 score (see 
equation (4)), assessing the accuracy of the fitted allometric equations. 
The result of these three allometric equations in table 1 were added to 
the dataset to enrich it with rough estimations of the tree structure. 
These features are titled equation_treeHeight(m), equation_-
crownStartHeight(m), and equation_crownRadius(m), as detailed in 
Table 2. 

RSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(yi − ŷi)
2

√

∑n
i=1yi

(1) 

where:

• yi is the actual value for the i-th observation,
• ŷi is the predicted value for the i-th observation,
• n is the number of observations.

In addition to the fundamental structural measurements of trees, 
information about surrounding objects, and measurements derived from 
allometric equations, we have extracted additional sub-features based 

Fig. 1. The distance and height measurement for surrounding objects around a sample tree is conducted at each 5-degree interval, spanning 72 directions. In the left 
image, the measurements pertain to neighbouring buildings, encompassing the distance from the tree location to the buildings and the height of the building in the 
specified direction. The right image showcases the analogous measurements for the surrounding trees. The Maximum measuring distance in this tool is set to 100 m 
based on the urban tree measurement practices in previous studies Rötzer et al. (2019).
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on the main features to enhance model training. Fig. 3 visually repre-
sents the features in grey and green colours. The measurements in grey 
represent the basic structural measurements and surrounding object 
information, while the green text signifies features derived from allo-
metric equation estimations. For a detailed explanation of all main 
features and sub-features in the dataset, refer to Table 2.

Sub-features are computed based on surrounding object measure-
ments and their ratios with main features and allometric equations. All 
sub-features are recorded in eight main geographic directions (N, W, S, 
E, NW, SW, SE, NE). In the main features section, aside from DBH, tree 
height, crown start height, and allometric equation features, all other 
features are direction-based. This implies eight distinct measurements 
for each feature corresponding to each main direction.

2.4. Model training and testing

As outlined in the initial step of Section 2.3, we designated 20 % of 
the dataset as the test data before conducting any data preprocessing 
and cleaning. Consequently, after the preprocessing step, two distinct 
datasets were formed, each containing the features listed in Table 2. 

Based on the features outlined in Table 2, the main and sub-features 
serve as the input (X) data for the machine learning models, while 
each prediction feature acts as an individual output (Y). Hence, 13 
distinct machine learning models were trained to predict each of the 
following features: tree height, crown start height, crown radius (in 8 
main directions), crown projection area, maximum crown diameter, and 
total volume. Next, the “botanical.name” feature, encompassing cate-
gorical variables, was converted into dummy variables, where the 
dummy variable is binary (yes = 1 or no = 0).

To gain an overview of performance across a diverse array of ma-
chine learning models, we utilised several widely recognised models 
from the scikit-learn library Pedregosa et al. (2024). A comparison was 
made among 16 common regression models with their default settings, 
including Random Forest Regressor, Support Vector Regression, 
Gradient Boosting Regressor, and Extra Trees Regressor. Additionally, a 
basic Artificial Neural Network (ANN) model was tested, constructed 
with Keras Chollet (2018), consisting of two hidden layers with 16 and 8 
nodes, respectively.

To evaluate the result of the model on the test dataset, we used three 
different evaluation metrics on each training model. These are the Mean 

Fig. 2. The dataset size is expanded by duplicating the crown radius measurements in 72 directions nine times for each main direction (N, W, S, E, NW, SW, SE, NE). 
All measurements ranging from S + 70∘ to E + 20∘ (covering nine directions) are considered under the east direction in the dataset.
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Absolute Error (MAE), Root Mean Squared Error (RMSE), and R2. MAE is 
the average error from every dataset sample and predicted value 
(equation (2)). 

MAE =
1
n
∑n

i=1

⃒
⃒
⃒
⃒yi − ŷi

⃒
⃒
⃒
⃒ (2) 

RMSE, or Root Mean Squared Error, is the square root of the average 
of the squared differences between the actual (observed) and predicted 
values (equation (3)). 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(yi − ŷi)

2
√

(3) 

Moreover, R2, also referred to as the Coefficient of Determination, is 
a metric regularly ranging from 0 to 1, indicating the goodness of fit of 
our regression model to the data. However, Chicco et al. (2021) pointed 
out that R2 values can be negative, indicating that a regression model’s 
performance may be inadequate. It quantifies the proportion of variance 
in the dependent variable that can be accounted for by our model. A 
higher R2 value, closer to 1 or 100 %, suggests that our model is more 
adept at predicting the dependent variable Wright (1921) (equation 
(4)). 

R2 = 1 −
SSRES

SSTOT
= 1 −

∑
i(yi − ŷi)

2

∑
i(yi − y)2 (4) 

At the numerator of the formula, we find the Residual sum of squared 
errors of the regression model (SSRES), which is essentially equivalent to 
the Root Mean Squared Error (RMSE). However, unlike RMSE, it is not 
divided by the number of samples (n). The denominator of the formula 
comprises the total sum of squared errors (SSTOT). This involves 
comparing the actual y values to our baseline model, which is the mean. 
To achieve this, we square the difference between all the actual y values 
and the mean, summing them together. Negative R2 values result when 
the SSRES is higher than SSTOT, which means the regression equation is 
worse than the mean value.

In addition to evaluating the model’s performance using various 
metrics and visualising predictions, we explored the significance of 
different features in the prediction process. Assessing the importance of 
features becomes challenging in large datasets with complex machine 

learning models, such as the Hist Gradient Boosting Regressor (HGBR), 
which is an ensemble model. To address this challenge, we employed 
SHAP (Shapley Additive exPlanations) values Lundberg and Lee (2017)
to quantify the importance of various features in model predictions.

In the subsequent phase, we assessed the trained model using addi-
tional common tree species in Munich that were not part of the training 
set. This evaluation aimed to determine the model’s applicability to 
other species and assess whether these species respond to light compe-
tition similarly to the main species. The new species and their sample 
sizes include Fraxinus excelsior: 83, Corylus colurna: 80, Prunus species: 
59, Carpinus betulus: 37, Acer pseudoplatanus: 31, Sorbus aria: 25, Fagus 
sylvatica: 11, Betula pendula: 10. Since the models were trained with only 
six main species, the new species were not recognisable for the models.

To test the models’ performance on these new species, each new 
species was individually labelled as a known species., and the models 
were evaluated using various metrics such as R2, MAE, and RMSE. Each 
model was evaluated six times for each new species, referencing the six 
main species.

Then, we utilised a small sample dataset from the cities of Hamburg 
and Essen to assess the TreeML models’ performance on the primary tree 
species in other cities with different climate conditions and environ-
ments. This point cloud dataset comprises 28 Tilia europaea and 
T. cordata trees in Hamburg and 14 P. x hispanica trees in Essen, and their 
local environment. The TreeML-Structure Measurement tool Yazdi et al. 
(2024) was employed to measure the tree structure and gather infor-
mation on surrounding objects.

3. Results

3.1. Evaluation of the machine learning models

Following the training of 13 models with 16 common regression 
methods, we identified the top-performing models among them. The five 
models that exhibited the best performance are the Hist Gradient 
Boosting Regressor (HGBR), Extra Trees Regressor (ETR), Gradient 
Boosting Regressor (GBR), Nu Support Vector Regression (NSVR), 
Random Forest Regressor (RFR), and Artificial Neural Network model 
(ANN). Tables 3, 4, and 5 showcase these models’ R2, MAE, and RMSE 
scores, respectively.

The R2 score for the tree height model reached approximately 0.83, 
establishing it as the top-performing model. For the crown radius models 
in eight directions, the R2 score averaged around 0.7. However, the 
crown start model did not perform satisfactorily, with an R2 score of 
approximately 0.24. On the other hand, the models for maximum crown 
diameter, crown projection area, and total volume demonstrated strong 
performance, achieving R2 scores of around 0.81, 0.78, and 0.70, 
respectively.

Gradient Boosting Regressor (GBR) is a robust ensemble technique 
commonly applied to regression problems. It functions by combining 
multiple weak learners, usually decision trees, to create a more powerful 
predictive model. The process begins with the construction of simple 
trees with a single node, followed by additional trees that focus on 
correcting the errors made by their predecessors. The impact of each tree 
is moderated by a learning rate, which ensures that no single tree 
dominates the prediction. This iterative procedure continues, adding 
new trees to the ensemble, until the specified number of trees is reached 
or there is no significant improvement in the model’s accuracy Friedman 
(2002). Furthermore, Hist Gradient Boosting Regression (HGBR) en-
hances this method by employing histogram-based techniques to speed 
up the training of decision trees. This involves binning continuous fea-
tures into discrete intervals, which significantly reduces computation 
time. The hist gradient boosting approach applies this faster algorithm 
to input variables, making it more efficient for large datasets. Each 
additional tree in the ensemble aims to refine the predictions by 
addressing the errors of the existing models, thus continually improving 
the overall accuracy of the predictions Gayathri et al. (2022).

Table 1 
The variations of the double logarithmic equations (ln(y) = a + b * ln(DBH)) for 
estimating tree height, tree crown start, and crown diameter (y) based on DBH 
for six main species in Munich. (TH = Tree height, CSH = Crown start height, CD 
= Crown diameter).

Species Number of 
samples (n)

y a b RSE R2

Tilia cordata n = 876 TH 0.89751 0.51497 0.1931 0.5
CSH 0.88474 0.13545 0.3006 0.03
CD − 0.265 0.66905 0.2021 0.6

Acer platanoides n = 425 TH 0.58282 0.57232 0.1978 0.64
CSH 0.5752 0.16624 0.2879 0.07
CD − 0.081 0.63817 0.1828 0.72

Platanus x hispanica n =
237

TH 0.75336 0.55972 0.1192 0.85

CSH 1.242624 0.004335 0.2685 0.00006
CD − 0.11448 0.69816 0.1302 0.88

Robinia pseudoacacia n =
200

TH 1.00757 0.45387 0.215 0.55

CSH 0.8696 0.15307 0.3297 0.05
CD − 0.07680 0.61171 0.1892 0.74

Populus nigra var. italica 
n = 73

TH 1.4582 0.43943 0.1404 0.71

CSH − 0.6253 0.4481 0.8457 0.07
CD − 0.18672 0.47888 0.2457 0.5

Aesculus hippocastanum 
n = 290

TH 0.8242 0.47354 0.1756 0.5

CSH 0.57639 0.12873 0.3706 0.02
CD − 0.05216 0.59508 0.1612 0.65
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Across all three evaluation metrics, the Hist Gradient Boosting Re-
gressor (HGBR) consistently emerged as the top or second-best 
performer in all models. Consequently, we selected the Hist Gradient 
Boosting Regressor (HGBR) as the best-performing model for further 
analysis and evaluation. In addition to the evaluation results in the 
Tables 3, 4, and 5 for the six best performing models, Fig. 4 shows the 
residual diagram (yi − ŷi) of the ten crown geometry prediction models 
of the Hist Gradient Boosting Regressor (HGBR) on the test dataset.

To visually assess the TreeML model’s efficacy in predicting crown 
geometry development, we selected a sample “Tilia cordata” tree from 
the test dataset in Munich, illustrated in Fig. 5. This tree is situated near 
a building in the north direction, with neighbouring trees on the east and 
west sides. The green points depict the actual crown shape in both plan 
and section views. The red line represents the estimated crown shape 
based on allometric equations from Table 1, derived from tree height, 
crown start height, and crown radius estimations based on the measured 
DBH and species.

In contrast, the TreeML model incorporates surrounding object ge-
ometries, enhancing the accuracy of crown geometry predictions by 
considering the competition with neighbouring objects. The blue line in 
Fig. 5 reflects the TreeML model’s prediction for this specific tree in 
Munich. Tree crowns tend to grow higher and extend through the south 
and southeast directions.

Fig. 6 presents the SHAP values for two sample models from our 13 
models. The diagram on the left corresponds to the tree height predic-
tion model, while the diagram on the right illustrates the results for the 
tree crown radius in the east direction. Analysing the SHAP values for 
the Tree Height model reveals that, in addition to DBH and allometric 
equation features, the height of adjacent trees in eight different di-
rections significantly influences the main tree’s height. Subsequently, 
features related to adjacent buildings impact the main tree’s height. 
Additionally, it is observed that the height of adjacent trees on the 
northern side has a more pronounced effect on the main tree’s height 
than those on the southern side (see Fig. 6 left).

Examining the SHAP value chart for the crown radius in the east 
direction, it becomes evident that the third most important feature is the 
distance to the adjacent tree in the east direction. Alongside this distance 
measure, other sub-features related to the adjacent tree in the east di-
rection exhibit substantial influence, following the allometric equations 
and species. Similar to the Tree Height prediction model, adjacent 
buildings demonstrate lesser importance than adjacent trees in crown 
radius prediction (see Fig. 6 right). The SHAP value diagram for all 13 
models can be found in the paper’s supplementary material.

Table 2 
List of the features in the dataset and their definitions.

*These features are direction-based, which means there are eight different measurements of each feature for each main direction. The features are divided into three 
groups: main features, sub-features, and predictions (see Fig. 3)). The blue and red colours of the main features and sub-features are hints for the readability of the Fig. 6
on the importance of the features during the model training.
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3.2. Evaluation of the models on other species in Munich (eight extra 
species)

In this phase, we extended the evaluation of our trained models to an 
additional eight tree species beyond the six primary species utilised 
during the training process. Tables 6 and 7 illustrate the evaluation of 
two sample models (Tree height and Crown radius_E) for eight new 
species using the R2 evaluation metric. The paper’s supplementary 
material evaluates all 13 TreeML models with all metrics.

Table 6 displays the R2 evaluation results of the tree height model on 
eight new species, referencing the six main species each time. It in-
dicates that the TreeML model performs well in predicting tree height 
for F. excelsior, C. colurna, C. betulus, A. pseudoplatanus, and Sorbus aria, 
with R2 metrics ranging from 0.49 to 0.77. However, the model did not 
exhibit strong performance in predicting tree height for Prunus species, 
Fagus sylvatica, and Betula pendula.

Table 7 presents the R2 results of the Crown radius_East model for the 
eight new species. The findings show that the TreeML model performs 
well in predicting the crown radius in the east direction for most species, 
with R2 values ranging from 0.43 to 0.78. However, the prediction of the 
crown radius_East for Prunus species is not accurate, similar to the Tree 
height prediction for this species.

3.3. Evaluating the model performance on two tree species in the cities of 
Hamburg and Essen

In this phase, we assessed our trained models’ adaptability and 
robustness using two smaller datasets from different cities to explore the 
impact of regional variations on model performance. Tables 8 and 9
present the evaluation metrics for the performance of the TreeML 
models on these trees, excluding the Total volume model due to limited 
access to the quantitative structure modelling (QSM) Raumonen et al. 
(2013) info of these trees for estimating their total volume.

Table 8 displays the results of the models on 28 trees in Hamburg. 
The evaluation indicates that the performance of the crown radius 
models in all directions, maximum crown diameter and crown 

Fig. 3. Visual representation of the main features within the dataset, distinguishing them in grey and green colours. The grey colour denotes the basic structural 
measurements of the tree and surrounding object information. In contrast, the green colour represents measures derived from the estimation of the allometric 
equation. Additionally, the red colour indicates the degree of surrounding trees and buildings’ height from the tree location, contributing to the extraction of 
sub-features.

Table 3 
The R2 metrics for the five best-performing models on the train and test dataset.

R2-train/R2-test

Models HGBR ETR GBR NSVR RFR ANN

Tree Height (m) 0.95/ 
0.83

1/ 
0.79

0.88/ 
0.81

0.85/ 
0.80

0.99/ 
0.80

0.68/ 
0.78

Crown Start 
Height (m)

0.83/ 
0.22

1/ 
0.24

0.64/ 
0.23

0.37/ 
0.23

0.98/ 
0.22

0.20/ 
0.22

crown_E (m) 0.88/ 
0.71

1/ 
0.70

0.76/ 
0.69

0.70/ 
0.63

0.99/ 
0.69

0.62/ 
0.65

crown_NE (m) 0.97/ 
0.71

1/ 
0.70

0.75/ 
0.71

0.70/ 
0.63

0.99/ 
0.68

0.48/ 
0.62

crown_NW (m) 0.85/ 
0.67

1/ 
0.68

0.72/ 
0.67

0.67/ 
0.58

0.99/ 
0.65

0.70/ 
0.61

crown_N (m) 0.87/ 
0.68

1/ 
0.66

0.75/ 
0.67

0.69/ 
0.57

0.99/ 
0.65

0.45/ 
0.58

crown_SE (m) 0.89/ 
0.68

1/ 
0.66

0.75/ 
0.68

0.70/ 
0.59

0.99/ 
0.65

0.64/ 
0.59

crown_SW (m) 0.86/ 
0.67

1/ 
0.67

0.74/ 
0.65

0.68/ 
0.59

0.99/ 
0.65

0.61/ 
0.63

crown_S (m) 0.87/ 
0.68

1/ 
0.66

0.75/ 
0.67

0.69/ 
0.61

0.99/ 
0.67

0.70/ 
0.60

crown_W (m) 0.86/ 
0.68

1/ 
0.69

0.73/ 
0.68

0.67/ 
0.59

0.99/ 
0.68

0.26/ 
0.61

Crown Diameter 
Max (m)

0.93/ 
0.81

1/ 
0.81

0.85/ 
0.80

0.82/ 
0.78

0.99/ 
0.79

0.79/ 
0.78

Crown 
Projection 
Area (m2)

0.94/ 
0.78

1/ 
0.77

0.85/ 
0.77

0.52/ 
0.54

0.99/ 
0.76

0.79/ 
0.75

Total Volume (L) 0.93/ 
0.70

1/ 
0.68

0.80/ 
0.69

− 0.07/ 
− 0.04

0.99/ 
0.65

0.65/ 
0.64

These five models are the Hist Gradient Boosting Regressor (HGBR), Extra Trees 
Regressor (ETR), Gradient Boosting Regressor (GBR), Nu Support Vector 
Regression (NSVR), Random Forest Regressor (RFR), and Artificial Neural 
Network model (ANN). (Bold: best-performing models)
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projection area needs more improvement for better results, with R2 

values ranging from 0.43 to 0.59. However, the tree height model 
demonstrates weak performance with an R2 value of around 0.36. 
Additionally, the crown start height performance is deemed unaccept-
able. In contrast to the model evaluation on trees in Hamburg, all 
TreeML models exhibit unacceptable performance on the P. x hispanica 
trees in Essen (Table 9).

4. Discussion

This study delves into the intricate dynamics of tree crown geometry 
development, aiming to unravel key factors influencing tree develop-
ment in urban settings. Previous studies emphasised the significance of 
canopy structure, density, and size in influencing local climate. How-
ever, the existing literature revealed a notable gap in the availability of 
precise models capable of predicting changes in tree crown geometry. To 
address this gap as the primary goal of this study, it employs machine 
learning techniques to develop a robust model for urban tree crown 
geometry development. To identify the best-performing machine 
learning model, we initially compared various methods. However, a 
detailed comparison of different model settings was not the primary 
objective of this study. Therefore, we only present the initial comparison 
results without delving into the specific hyperparameters of each ma-
chine learning method.

Our comprehensive evaluation of 13 machine learning models 
highlighted the Hist Gradient Boosting Regressor (HGBR) as the most 
promising performer across various evaluation metrics, including R2 

(Table 3), Mean Absolute Error (MAE) (Table 4), and Root Mean 
Squared Error (RMSE) (Table 5). This model consistently ranked the best 
or second-best across all tree crown dimensions assessed. Notably, the R2 

values for the tree height and maximum crown diameter models 
demonstrated the efficacy of the HGBR model, reaching values as high as 
0.83. Furthermore, visualising the TreeML model’s performance on a 
specific T. cordata tree in Munich provided tangible evidence of its ac-
curacy in predicting crown geometry growth (Fig. 5). The model, which 
considers surrounding objects’ geometries for more accurate pre-
dictions, exhibited a nuanced understanding of how light competition 
with neighbouring trees and buildings influences tree crown shape. This 
level of detail is crucial for predicting changes in tree projection area and 
volume, ultimately affecting the tree’s shading and ecosystem services. 
Notably, our results echo the views of Franceschi et al. Franceschi et al. 
(2022), who stressed the significance of precise crown geometry pre-
dictions in assessing tree shading and ecosystem services.

Next, we employed SHAP values to elucidate the factors influencing 
the model predictions, revealing insights into the importance of 
different features in TreeML models. The influence of adjacent trees and 
buildings emerged as a significant factor in both sample bar charts 
(Fig. 6). Moreover, expanding the evaluation to include eight additional 
tree species in Munich provided valuable insights into the general-
isability of our models. While the TreeML model strongly predicted tree 
height and crown radius for some species, limitations were observed for 
others, such as Prunus species, F. sylvatica, and B. pendula. We assume 
that the evaluations fit some species because they are physiologically 
similar to the species we used for developing the model. However, this 

Table 4 
The MAE metrics for the five best-performance models.

Mean Absolute Error (MAE)

Models HGBR ETR GBR NSVR RFR ANN

Tree Height (m) 1.32 1.38 1.40 1.48 1.38 1.47
Crown Start Height (m) 0.77 0.76 0.80 0.79 0.77 0.79
crown_E (m) 0.76 0.75 0.77 0.88 0.76 0.83
crown_NE (m) 0.75 0.75 0.75 0.86 0.77 0.84
crown_NW (m) 0.72 0.72 0.72 0.86 0.74 0.78
crown_N (m) 0.71 0.72 0.73 0.87 0.73 0.80
crown_SE (m) 0.73 0.76 0.75 0.86 0.77 0.83
crown_SW (m) 0.77 0.78 0.80 0.90 0.81 0.84
crown_S (m) 0.75 0.78 0.76 0.87 0.77 0.82
crown_W (m) 0.72 0.71 0.73 0.86 0.72 0.80
Crown Diameter Max (m) 1.14 1.12 1.18 1.27 1.16 1.25
Crown Projection Area (m2) 14.47 14.26 14.87 26.05 14.68 16.01
Total Volume (L) 1137.00 1165.48 1173.86 2811.43 1199.34 1272.63

These five models are the Hist Gradient Boosting Regressor (HGBR), Extra Trees Regressor (ETR), Gradient Boosting Regressor (GBR), Nu Support Vector Regression 
(NSVR), Random Forest Regressor (RFR), and Artificial Neural Network model (ANN). (Bold: best-performing models)

Table 5 
The RMSE metrics for the five best-performance models.

Root Mean Squared Error (RMSE)

Models HGBR ETR GBR NSVR RFR ANN

Tree Height (m) 1.94 2.16 2.03 2.12 2.12 2.19
Crown Start Height (m) 1.75 1.72 1.74 1.73 1.74 1.74
crown_E (m) 1.04 1.05 1.07 1.17 1.07 1.19
crown_NE (m) 1.00 1.04 1.03 1.16 1.08 1.16
crown_NW (m) 0.99 1.02 1.03 1.16 1.06 1.11
crown_N (m) 1.02 1.04 1.03 1.17 1.06 1.19
crown_SE (m) 1.02 1.05 1.03 1.15 1.07 1.11
crown_SW (m) 1.08 1.10 1.13 1.22 1.12 1.17
crown_S (m) 1.06 1.08 1.07 1.17 1.07 1.15
crown_W (m) 1.00 1.01 1.03 1.15 1.02 1.10
Crown Diameter Max (m) 1.66 1.66 1.69 1.77 1.74 1.78
Crown Projection Area (m2) 22.86 23.10 23.28 33.09 23.98 24.35
Total Volume (L) 1877.48 1961.10 1910.05 3493.29 2022.63 2058.29

These five models are the Hist Gradient Boosting Regressor (HGBR), Extra Trees Regressor (ETR), Gradient Boosting Regressor (GBR), Nu Support Vector Regression 
(NSVR), Random Forest Regressor (RFR), and Artificial Neural Network model (ANN). (Bold: best-performing models)
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suggests a need for species-specific model development with more spe-
cies to increase accuracy.

In the last step, further evaluation in Hamburg and Essen revealed 
varying performance across different urban environments. The models 
demonstrated acceptable performance on T. europaea and T. cordata 
trees in Hamburg, particularly in predicting crown radius, while 
exhibiting weaknesses in predicting tree height. Conversely, all models 
performed inadequately on P. x hispanica trees in Essen, underscoring 
the importance of considering regional variations and environmental 
factors in model training or the need for a large amount of test data.

Our study addresses significant gaps in understanding the in-
teractions between trees and their urban context. While previous 
research has primarily focused on light competitions in forest stands, the 
effects of tree-to-tree and building-to-tree competitions in urban envi-
ronments still need to be studied. The intricate relationship between 
trees and their surroundings, especially in the context of competition 
and tree crown structures, underscores the need for a comprehensive 
examination. The TreeML model should not be regarded as a tree growth 
prediction model. Instead, it predicts the crown geometry of tree species 
based on their DBH. The model uses DBH as an input variable, which is 
influenced by various tree growth factors such as climate, soil condi-
tions, underground characteristics, and open surface area Rötzer et al. 

(2019). However, it has some limitations that should be considered in 
the usage and future development:

• The TreeML models are tailored to specific tree species. Although we 
obtained acceptable results for various species in Munich, this may 
not universally apply to all cases and diverse species.

• Factors influencing tree crown geometry prediction, such as the 
urban environment, city layout, climate, and location, can vary. The 
TreeML models were developed within the context of the city of 
Munich, and the study’s outcomes cannot guarantee the model’s 
applicability in other cities, even with the same tree species.

• The unique tree maintenance and management practices on Tree in 
Munich, or common issues such as powerlines and vandalism, in-
fluence the training of the TreeML models and could reduce its ac-
curacy in a particular situation. It may not align with different urban 
tree care workflows in other locations. Retraining the models is 
recommended for different contexts.

• Urban tree manipulation, like pruning branches below 3–4 m for 
traffic and mobility needs, significantly impacts the accuracy of 
predicting crown start height, as evident in the evaluation metrics. 
Thus, due to high human intervention, the TreeML model is limited 
in predicting start height.

Fig. 4. Residual diagrams (Actual - Predicted) (yi − ŷi ) of the ten crown geometry prediction models of the Hist Gradient Boosting Regressor (HGBR) on the 
test dataset.
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• TreeML models rely on the tree’s DBH. While estimating DBH for 
various tree species based on age is limited and inaccurate, TreeML is 
restricted to predicting crown geometry growth based on tree age.

• TreeML predicts rough crown geometry based on tree height, crown 
start height, crown radius in different directions, and the typical 

shape of the specific species (see Fig. 5). It is limited to providing an 
accurate 3D model of the crown shape.

• The TreeML model was developed based on a dataset of single-stem 
trees. Therefore, it needs to be validated on multi-stem trees for 
crown geometry prediction.

Fig. 5. A Tilia cordata tree from the test dataset is positioned near a building in the north direction, with two neighbouring trees in the east and west directions. The 
green point cloud represents the actual tree configuration, and the red line depicts the crown shape based on the allometric equations outlined in Table 1. In contrast, 
the blue line showcases the TreeML’s predicted crown shape, visible in both the plan (left) and section view (right). The TreeML models predicted ten crown ge-
ometry points (marked in blue +): the crown start height, crown height, and the crown radius in eight geographical directions (as illustrated by the dashed line in the 
left figure). The crown shape is delineated by a curved line that must pass through these points in both the plan and section views.

Fig. 6. The bar charts illustrate the importance of features in two sample models based on the SHAP values. The order of the SHAP values for the Tree Height 
prediction model is depicted in the left figure. The SHAP values, presented on the right, predict the tree crown radius in the east direction. These features are 
separated into two categories by colour: tree-dependent features (blue) and local environment-dependent features (red). See Table 2 for the list of features and 
their definitions.
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Table 6 
the evaluation result (R2-test) of the Tree height model for the eight new species by referencing each main species.

(Bold: best-performing models, Red: poor-performing models)

Table 7 
The evaluation result (R2-test) of the Crown radius_E model for the eight new species by referencing each main species.

(Bold: best-performing models, Red: poor-performing models)

Table 8 
Evaluation of the TreeML models on 28 sample Tilia europaea and Tilia cordata trees in Hamburg.

(Red: poor-performing models)
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Despite the mentioned limitations, our findings have important im-
plications for urban forestry management and planning. While the 
TreeML model shows promise in predicting the growth patterns of 
certain tree species in specific urban environments, caution is warranted 
when applying it to different species or locations. Future research en-
deavours should focus on refining models for specific species and 
exploring the integration of additional locational variables to enhance 
predictive accuracy.

5. Conclusions

In conclusion, this study provides significant insights into the com-
plex dynamics of urban tree growth and crown geometry, addressing 
crucial gaps in our understanding of the interplay between trees, 
competition, and urban structures. Our research illuminates the 
nuanced factors influencing tree crown geometry development, 
considering not only species and DBH but also the direct surroundings, 
including light and space competition and adjacent buildings.

By posing key questions about the impacts of competition and urban 
structures on tree growth and crown geometry, this study charts a course 
for future studies. The findings presented here can contribute to the 
broader field of urban forestry, offering valuable insights for informed 
decision-making in city planning and the sustainable management of 
urban green spaces.

As cities evolve, grasping the intricate relationships between trees 
and their surroundings becomes increasingly crucial. The ability to 
predict canopy geometry with greater precision marks a significant 
advancement, particularly for the planning and design of urban green 
infrastructure. This newfound capability allows us to integrate factors 
such as tree competition and the intricate interplay between trees and 
buildings into planning and design decisions with unprecedented ac-
curacy. Our research lays the groundwork for a more sustainable and 
resilient urban future, where the planting and management of urban 
trees are guided by a thorough understanding of their dynamic in-
teractions in various urban environments.

Code Availability

The TreeML-SM script “TreeML-SM.py”, and the surrounding 

objects’ distance and height measurement “distance_measurment.py” 
are published in the GitHub repository (https://github.com/hadi-yazdi/ 
TreeML-Data). Please refer to the Readme file in the Github repository 
for further information.
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