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• PM10 concentration and deposition flux
were highest in Hong Kong and lowest
in Vancouver.

• PM10 flux showed a positive relationship
with population density, LST & wind
pressure.

• Park site showed the lowest PM10, while
industrial site showed the highest.

• Greenspace contribution was significant
once the greenspace cover exceeded 27
% of the land cover.
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A B S T R A C T

Urban areas face high particulate matter (PM10) levels, increasing the risk of respiratory and cardiovascular
diseases. Green spaces can significantly reduce PM10 concentration, as shown at various scales, from boroughs to
whole cities. However, long-term monitoring is needed to understand the specific mechanisms and cumulative
impact of green spaces on air quality to changing pollution levels. We investigated the influence of neigh-
bourhood green space percentage, climatic variables, and population density on PM10 deposition during the
vegetation period across eight cities in contrasting climate zones over 20 years (2000-2020). We used a corre-
lation matrix, generalized additive model, one-way ANOVA, and Tukey HSD test to analyze the impact of these
factors on PM10 deposition rates, assess the role of green space percentage in reducing it, and identify significant
differences in PM10 parameters at different proximities to emission sources. Cities with higher population
density in warmer, drier climates had higher PM levels, since land surface temperature and wind pressure
positively correlated with PM10 deposition, while relative humidity showed a negative correlation. The study
found significantly higher PM10 concentrations in industrial areas (36.25 μg/m3) than in roadside areas (25.73
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μg/m3) and parks (20.17 μg/m3) (p < 0.01). This highlights the need for targeted interventions in different zones.
The study found a complex relationship between green space percentage and PM10 deposition rate onto plant
surfaces. Our model suggests that at least 27% of green spaces as land cover can significantly reduce the par-
ticulate matter flux, although the minimum threshold can vary depending on the specific urban contexts. The
study focused on the proportionate cover of green spaces; still, further investigation including quantitative as-
pects of urban surface forms, and traffic emissions can comprehend the climatic context and determine the
optimal extent of green space required for strategic planning toward future urban sustainability initiatives.

1. Introduction

The trend of the world's population living in urban areas is ever-
increasing, projected to reach 66 % by 2050 (United Nations, 2018).
Higher population density due to urbanization leads to higher particu-
late matter (PM) concentrations (Baek and Ban, 2020). In particular,
PM10, a particular type of airborne pollutant comprising small particles
with an aerodynamic diameter of 10 μm or less (Anderson et al., 2012),
is regarded as a contributor to respiratory and cardiovascular diseases
(Chowdhury et al., 2018; Cowell et al., 2019). Moreover, green space is
often limited in densely populated urban areas (Arshad and Kumar
Routray, 2018). Green spaces help mitigate PM10 by increasing depo-
sition surfaces (Janhäll, 2015) and enhancing urban surface roughness
(Gunawardena et al., 2017). In Rome, Marando et al. (2016) reported
3757.4 Mg PM10 removal by 22 % of vegetation cover during summer.
McDonald et al. (2007) showed that increasing tree cover in Glasgow
from 3.6 % to 8 % could reduce 2 % average annual PM10 concentra-
tion. Thus, urban vegetation appears to be one of the promising action-
based techniques since preventive and mitigating strategies for PM
emissions pose substantial challenges (Wu and Guo, 2021).

PM deposition flux (the rate at which PM is removed from the at-
mosphere and deposited onto a surface area over a specific time) can be
influenced by temporal variations of PM, along with meteorological
conditions, green space proximity, and deposition surface availability
(Erisman and Draaijers, 2003; Zellner, 1986). Local meteorological
conditions, such as land surface temperature (uplift), precipitation
(washout), and wind pressure (dispersing), influence the level of PM
(Faisal et al., 2022; Li et al., 2019; Zhang et al., 2015). A study by Wang
et al. (2015) demonstrated that intense rainfall events can wash out
accumulated coarse particles by 28–48 % from a single species, while
higher wind pressure can remove them by 27–35 %. Xu et al. (2017)
showed that wash-off by controlled rainfall removed 51 to 70 % of
surface PM accumulation from the foliage of four broadleaf species.
Chithra and Shiva Nagendra (2014) found a positive association be-
tween indoor PM10 and outdoor temperature, with an R2 value ranging
from 0.32 to 0.47. At the same time, urban vegetation can significantly
improve the local climate, for instance, providing shade and cooling
effects through increasing evapotranspiration (Pace et al., 2021; Rah-
man et al., 2023) which might reduce the formation of secondary PM.

The presence of green space or individual plant elements interacting
with PM as a system can facilitate temporary or permanent deposition of
PM10 onto a plant surface, and the leeward side of green space affects
dispersion, which can reduce PM10 concentration (Diener and Mudu,
2021; Rafael et al., 2018). Leaf particulate matter accumulation in-
creases from spring to autumn during the vegetation period (Wang et al.,
2013). Using a monthly PM10 concentrations dataset containing 1216
air quality stations across Europe in 2018, Sohrab et al. (2023) showed
that land use significantly impacts air quality, specifically PM10 con-
centrations. However, the intricate relationships between meteorolog-
ical parameters, landscape metrics with the land use and land cover
composition are largely unknown.

While the general consensus supports the notion that green spaces
contribute to improving air quality by reducing PM10 levels (Diener and
Mudu, 2021), there are notable inconsistencies (such as reducing
ventilation, thus leading to a higher concentration of PM at pedestrian
levels (Gromke and Ruck, 2009) and knowledge gaps in the scientific

literature (Wang et al., 2024). For instance, in terms of spatial scale,
studies conducted at different spatial scales (local, urban, regional) often
yield varying results. Some studies report significant PM10 reductions
within the immediate green spaces, while others find limited or no
impact at larger scales. This discrepancy may be attributed to factors
such as the type of green space (e.g., sparse vegetation versus large
urban forests), meteorological conditions (Nguyen and Liou, 2024), and
the distribution of pollution sources. Green spaces appear to be more
effective in mitigating traffic-related PM10 emissions, with experi-
mental evidence indicating up to a 50 % reduction in time-averaged PM
concentrations near roadside vegetation (Deshmukh et al., 2019;
Ottosen and Kumar, 2020). However, their effectiveness is less pro-
nounced for industrial emissions, which may even show a negative
correlation with PM10 levels, particularly during summer when heating
is not required (Sohrab et al., 2023). Uncertainty also exists regarding
the complex interplay between vegetation with inherent traits such as
leaf area index, tree spacing and different PM10 sources while mini-
mizing the negative impact on air quality (Vashist et al., 2024; Wang
et al., 2024; Zhao et al., 2024). Moreover, most studies focus on the
short-term effects of green spaces on PM10 (Vitaliano et al., 2024).
There is a need for long-term monitoring to assess specific mechanisms
as well as their relative and cumulative importance of green spaces on
air quality to changing pollution levels. Local studies are important to
understand the deposition effects; however, studies encompassing
various species in various setups and climatic zones along with popu-
lation density, which can serve as a surrogate measure for other emission
sources in the urban environment are vital for comprehensive long-term
policy-making (Vashist et al., 2024).

A study by Pražnikar (2017) demonstrated the inter-continental
comparison of PM in semi-arid and humid-continental climate zones.
Another study by Wang et al. (2021) showed how PM10 differs across
cities located in eight climatic regions of China. Therefore, a relatively
long-term study to understand the impact of urban green spaces on
PM10 removal across diverse climates is absolutely necessary. Addi-
tionally, Sohrab et al. (2022) found that road density and proximity
strongly affect PM10 levels, with pollution decreasing as distance from
roads increases in urban and rural areas. In densely populated residen-
tial zones, higher traffic volumes and congestion elevate PM10 levels.
However, there is a knowledge gap regarding the spatial placement of
vegetation within different climate zones to improve air quality without
disrupting the daily lives of residents.

We hypothesized that with increasing temperature and wind pres-
sure (hence lower wind speed) but decreasing relative humidity, PM10
deposition flux will increase, green spaces closer to the sources will also
increase the deposition, and finally, more dense green spaces will have
better PM10 reduction compared to sparse canopies. The hypothesis will
be tested using 20 years of long-term data on green spaces and PM10
concentrations, analyzed at both citywide and local scales across eight
cities located on different continents, each with distinct setups and
climate zones. This study aims to investigate: 1. How green space den-
sity, climatic variables, and population density influence PM10 depo-
sition flux during the vegetation period and 2. What are the optimal
locations for tree planting—parks, roadsides, or industrial sites—to
achieve the most effective reduction in PM10 levels?
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2. Materials and methods

2.1. Study area and sampling sites selection

Larger and densely built cities typically have higher levels of PM10
concentration since PM10 flux tends to increase with higher emissions
from transportation, energy consumption and intensified land use per
area unit (An et al., 2013). As such, we collected PM10 concentration
data from eight cities (≥2 million population in 2020) located within
contrasting Köppen-Geiger major climate zones (Fig. 1) (Peel et al.,
2007). These global metropolises offer diverse urban settings, planning
approaches, and robust data, enabling broad applicability of study
findings.

The available PM10 data was utilized to select sample sites. Specif-
ically, cities located in different climate zones that had publicly avail-
able PM10 concentration data up to at least the last 20 years (2000 to
2020) were selected. Three stations in each city: Berlin, London,
Stockholm, Melbourne, Vancouver, New York City, Hong Kong, and Los
Angeles (See Supplementary Tables 1 and 2 for details) were selected. A
one-kilometre buffer area was created around each air quality moni-
toring station, with the station coordinates serving as the centre of each
buffer area (Fig. 2).

Studies showed the influence of land use and greenspaces on PM
concentration was more suitable for buffers starting from 1000 m
(Connors et al., 2013; Lei et al., 2018; Sohrab et al., 2023). The one-
kilometre buffer was chosen because this study wanted to concentrate
the analysis on a neighbourhood scale rather than a city scale
(2000–16,000 m), which the 1000 m buffer accurately captures.

To address research question two, Londonwas focused on due to data
availability along different emission sources, and three distinct sampling
sites (park, roadside, and industrial) were selected (Supplementary
Fig. 1) (London Air Quality Network, 2023). We created a 150 m buffer
area around the position of the air quality monitoring stations. Here, the
focus was to conduct a detailed investigation of how PM10 concentra-
tions, PM10 deposition flux, and PM10 dry deposition vary at different
proximity levels from emission sources in a city located within a
particular climate zone. In London, we selected a 150 m buffer to utilize
fine-scale resolution data for determining PM10 dry deposition, ac-
counting accurate leaf area index (LAI). However, park, roadside, and
industrial sites were selected since this approach can provide insights
into the very localized effect of green space compared to other land uses.

2.2. PM10 data

PM10 concentration data for selected cities was obtained from open
sources (Supplementary Table 2). Since plants experience strong growth
during the growing period and reach their peak dust absorption capacity
in the summer (Gao et al., 2015), the study focused on the vegetation
period.

For the vegetation period, we selected five months (even though the
vegetation period usually decreases from South to North) (Rötzer and
Frank-M. Chmielewski., 2001) from April to August to represent the
vegetation period for Berlin, London, New York, Los Angeles, and
Vancouver. For Stockholm and Hong Kong, the representative vegeta-
tion period was selected from May to September. Lastly, the vegetation
period from October to February was selected for Melbourne. Initially,
we calculated the monthly mean PM10 concentration. Afterwards, the
mean PM10 concentration during the vegetation period was deter-
mined. Vegetation period was also selected to account for the differences
in leaf-bearing duration between evergreen conifers and deciduous
trees.

Among the selected stations, only Stockholm and New York had
subsequent missing data in their monthly mean PM10 concentration.
For Stockholm, the PM10 data availability was from 2006 to 2020.
Therefore, the imputation method for the missing monthly mean PM10
for Stockholm was utilized (following Kang, 2013). Additionally,
missing PM10 concentration data for New York was substituted with the
sum of emitted PM10 from all anthropogenic sources documented by
EDGARv6 (https://eccad.sedoo.fr/#/catalogue).

2.3. Population density data

Population density data within each one-kilometre buffer area was
extracted using Google Earth Engine from “GPWv411: UN-Adjusted
Population Density”.

(Gridded Population of the World Version 4.11) database (CIESIN/
GPWv411/GPW_UNWPP-Adjusted_Population_Density). This dataset
provided population density values at a spatial resolution of approxi-
mately 1 km (927.67 m) and a unit of persons per square kilometre. The
population density within each one-kilometre buffer zone was calcu-
lated by averaging the population density values across all grid cells
using the ee.Reducer.mean () function in Google Earth Engine. The
population data was estimated based on national censuses for 2000,
2005, 2010, 2015, and 2020. Subsequently, linear imputation was

Fig. 1. Location of the studied sample sites.
*Indicated that the colour scheme was adopted from Peel et al., 2007. A colour represents a climate zone.
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performed for missing values in the time series of population data using
the imputeTS package in R (Moritz and Bartz-Beielstein, 2017).

2.4. Climatic variables data

This study also assessed meteorological variables: land surface
temperature (◦C), precipitation (mm/day), and wind pressure (kPa) as
the climatic variables of interest during the vegetation period (Supple-
mentary Tables 5 and 11). The climatic variables data was obtained from
the Data Access Viewer of NASA Prediction of Worldwide Energy
Resources-the Power project. (https://power.larc.nasa.gov/data-access
-viewer/). Here, the coordinate points of each sample site represented
the specific target points from which climatic variables data were
collected, including mean land surface temperature (LST), mean wind
pressure during the vegetation period, and mean precipitation in mm/
day. Consequently, precipitation data was aggregated as a sum over the
vegetation period. Wind pressure, instead of wind speed, was used as
pressure is often related to low wind speed and significantly affects the

atmospheric stability conditions which influence the pollutant concen-
tration (Akyüz and Çabuk, 2009).

2.5. Land use and land cover analysis

To obtain green space data, pixel-based land use and land cover
(LULC) classification analysis was conducted using Landsat 5 and
Landsat 8 from 2000 to 2020 in Google Earth Engine. Subsequently, we
focused on four major land cover types, namely green space, built-up
area, bare soil, and water (Fig. 3). The cloud cover of the satellite im-
ages was ensured to be<10 %; however, only in exceptional cases, up to
17 % cloud cover was considered. The visual proportions of land cover
types (based on the proportional representation of each land cover type)
were considered at the sample site to assign training points for each
class. Afterwards, we used a random forest classifier to conduct classi-
fication using the assigned training points. Trees, shrubs, and grass were
included within the green space class (Fig. 2 and Supplementary code 4).

The accuracy of the land cover classification was checked once be-

Fig. 2. The methodological framework for extracting greenspace percentage using Google Earth Engine and analyzing the impact of neighbourhood green space (%),
climatic variables, and population density on PM10 deposition flux using the GAM model.
Here, *FEA, *ELC, *SMHI, *EPA, *GBC, *EPA, and *EPD indicated Federal Environmental Agency, Empirical College of London, Swedish Meteorological and Hy-
drological Institute, Environmental Protection Authority, Victoria, Government of British Colombia, Canada, Environmental Protection Agency, USA and Environ-
mental Protection Department, Hong Kong respectively.
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tween 2000 and 2020 with training overall accuracy, training kappa,
confusion matrix, validation error matrix, and validation overall accu-
racy. The validation overall accuracy was 0.973, 0.952, 0.962, 0.921,
0.995, 0.952, 0.948, and 0.939 for the sample sites in Berlin, Hong Kong,
London, Los Angeles, Melbourne, New York, Stockholm, and Vancouver
respectively (Supplementary Table 4). Total green space was converted
into total green space percentage Eq. (1):

Green space (%) =
Green space

Total land cover
*100 (1)

2.6. Calculation of PM10 deposition flux and PM10 dry deposition

The dry particle flux of PM10 (mass per area and time) can be
expressed as the product of deposition velocity Vd (length per time) and
PM10 concentration c (mass per volume) (Langner et al., 2011). Depo-
sition velocity represents the rate at which particles are deposited from
the atmosphere to a surface. The downward pollutant flux of PM10 or
PM10 deposition flux was calculated using the following formula (Wu
et al., 2018; Zufall and Davidson, 1998):

F = VdC (2)

where F is the deposition flux of PM10 in μg/m2/s, Vd is the dry depo-
sition velocity of PM10 (m/s), and C is the concentration of PM10 in the
air. Vd was evaluated at a median value of 0.0064 m/s from the litera-
ture (Lovett, 1994). Even though surface types influence deposition
velocity and deposition rates, green space was considered to be the only
deposition surface since our study aims to assess the unique impact of
green space on air quality. To address research question two specifically
for the London case study, we calculated PM10 dry deposition over the
vegetation period following McPherson et al. (1994) as:

PM10 dry deposition per ground area

=

(
∑5

i=1
Vd.CiTi.24.3600.LAIi.0.5

)

(3)

Here, Ti is the number of days studied, LAIi corresponds to the
calculated leaf area index within the 150 m buffer area during the
vegetation period, and 0.5 is the resuspension rate of particles returning
to the atmosphere (Zinke, 1967). The resuspension rate refers to the
physical process by which a set of particles lying on a surface are

entrained away through the action of a fluid flow per unit of time (Henry
et al., 2023). LAI was extracted using a remote sensing technique in
Google Earth Engine by analyzing Landsat 5 and Landsat 8 surface
reflectance imagery from 2000 to 2020. The leaf area index is the total
surface area of leaves per unit of ground area. LAI was calculated based
on the Enhanced Vegetation Index (EVI), computed as EVI =
2.5*((NIR − RED)/(NIR+ 6*RED − 7.5*BLUE+ 1) ) (Andalibi et al.,
2021; Huete et al., 1997) (Supplementary Code 1–3). Furthermore, a
validation of the LAI values was performed using linear regression be-
tween estimated and observed LAI values (De De Peppo et al., 2021)
(Supplementary note 1). Ti was estimated between April to August.

2.7. Statistical analysis

We performed statistical analyses using the statistical software R (R
4.2.3).

2.7.1. Correlation matrix and Generalized Additive Model (GAM)
The Spearman correlation matrix was used to obtain a preliminary

understanding of the relationship between PM10 deposition flux, pop-
ulation density, and climatic variables. Additionally, the Generalized
Additive Model (GAM) (Wood and Augustin, 2002) was employed to
capture the non-linear relationships of climatic variables and green
space with PM10 deposition flux.

GAMs are a semi-parametric extension of Generalized Linear Models
(GLMs) by. incorporating smooth functions in place of linear and other
parametric terms (González-Andrés et al., 2021). The smooth function in
GAM offers greater flexibility such as it does not need to assume a spe-
cific parametric form. The GAM made the only assumption that func-
tions are additive, and components are smooth, which allows the model
highly non-linear and non-monotonic relationships between the
response and the set of explanatory variables. GAM does not rely on a
pre-determined model structure but can be rather described as data
driven (Yee and Mitchell, 1991). GAM can be used to estimate the effect
on PM10 deposition flux based on a variety of predictor variables to
account for potential confounding factors and capture non-linear re-
lationships by incorporating smoothing functions and penalized
regression splines (Zuur et al., 2007).

In our model, the response variable was PM10 deposition flux. The
predictor variables included green space percentage, as well as popu-
lation density, and selected climatic variables.

Fig. 3. An example image of extracted greenspaces from sample sites in London through pixel-based LULC.
Here, (*BLO), (BX2), and (*GR4) indicate sample sites ID for 1 km buffer in London.

g(PM10deposition flux= s(Green space percentagei)+s(Land surface temperaturei)+s(Precipitationi)+s(Windpressurei)+s(Populationdensityi)+ε
(4)
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The GAMs were fitted with a non-Gaussian distribution and the
smoothing function denoted by “s” was incorporated in the explanatory
variables for all sampling sites cumulatively. The function g (.) repre-
sents the link function in the model, which establishes the relationship
between the expected value of the response variable and the predictor
variables. The symbol ε represents the residual error term in the model.
This term accounts for unexplained variability in the response variable
that is not captured by the smooth functions of the predictor variables.
The selection of predictor variables for the model was based on a vari-
ance inflation factor (VIF) test with a threshold value below 4 to avoid
multi-collinearity among predictor variables (O'brien, Robert M., 2007).

To describe the error distribution and the link function to be used in
the model, the “scat” family function was used instead of the default
Gaussian or the Gamma family function. This choice enhanced the
model's ability to capture the complex relationship between PM10
deposition flux and predictor variables. Since the response variable
PM10 deposition flux did not follow either Gaussian or skewed distri-
bution, but rather exhibited heavy-tailed distribution. The best model
was selected based on the lowest Akaike Information Criterion (AIC)
(Burnham and Anderson, 2004), and the model fit was checked with a
quantile of a standard normal distribution (Augustin et al., 2012) using
the DAHRa package in R (Hartig and Hartig, 2017). The “mgcv” package
for GAM was used, developed by Wood and Wood (2015) in the R
software (R 4.2.3, released on 2023/03/16) (R Core Team, 2023). The
model was also checked by residual plots generated using the gam.check
() function from the “mgcv” package.

2.7.2. ANOVA and HSD test
We conducted a One-way ANOVA and post-hoc analysis using

Tukey's Honesty Significant Difference (HSD) test to identify significant
differences in PM10 concentration, PM10 deposition flux, and PM10 dry
deposition among the industrial, park, and roadside sampling sites. The
Tukey HSD test was chosen for its effectiveness in controlling the like-
lihood of Type I errors and is appropriate in multiple comparisons across
all possible group pairings (Agbangba et al., 2024; Toothaker, 1993).
The significant difference in this context implies the mean differences
among sites. The threshold for significance was a p-value of <0.05 (p <

0.05).

3. Results

3.1. The amount of green space percentage, the variation of PM10
concentration and PM10 deposition flux during the vegetation period

The amount of green space percentage, PM10 concentration, and
PM10 deposition flux within a one-kilometre buffer surrounding the
measuring stations varied across cities situated in different climate
zones. The highest percentage of green space (36.5 %) was found in the
sample sites in Melbourne, followed by Berlin (32.4 %). In contrast, the
lowest percentage of green space (23 %) was found in the sample sites in
Stockholm followed by Vancouver (23.2 %) (Supplementary Table 9).

The highest mean PM10 concentration (34 μg/m3) and mean PM10
deposition flux (0.22 μg/m2/h) were observed in Hong Kong, located in
the humid subtropical climate zone (Cfa). Conversely, the lowest mean
PM10 concentration (12 μg/m3) and PM10 deposition flux (0.08 μg/m2/
h) were found in Vancouver, located in the oceanic climate (Cfb). Berlin
showed the second-highest mean PM10 concentration (23.7 μg/m3) and
PM10 deposition flux (0.15 μg/m2/h). Berlin was followed by Los
Angeles which is located in the Mediterranean warm climate (Csa)
(PM10 concentration of 21.9 μg/m3 and mean PM10 deposition flux of
0.14 μg/m2/h). The mean PM10 concentration and deposition flux in
Stockholm (humid continental climate Dfb) were comparatively lower
than those in Berlin, London, and Melbourne (Cfb). Melbourne had
lower levels of PM10 concentration and PM10 deposition flux (0.13 μg/
m2/h) compared to London and Berlin, but higher than Vancouver.

However, PM10 concentration trends and distribution differed

during the vegetation period, which consequently led to changes in the
trends and distribution of PM10 deposition flux (Supplementary
Table 8). Los Angeles (P = 0.28), Berlin, and Melbourne (P < 0.001)
showed a decreasing trend of PM10 with an increasing trend of green
space percentage (Fig. 4). In contrast, London, Stockholm, Vancouver,
New York, and Hong Kong experienced a decline in PM10 concentration
(p < 0.001), despite no concurrent increase in green space percentage.
Notably, the green space percentage increased in one sample site in New
York (NY110) and one in Hong Kong (HKTP) over the studied period.

3.2. Influence of climatic variables (precipitation, LST, and wind
pressure) and population density on PM10 deposition flux

Both the Spearman correlation matrix and GAM model showed a
significant impact of population density and climatic variables, namely
precipitation, land surface temperature (LST), and wind pressure on
PM10 deposition flux.

The Spearman correlation matrix showed a negative correlation (r =
− 0.14, p < 0.05) between PM10 deposition flux and precipitation.
Besides this linear overview of the negative correlation in the correlation
matrix, the GAM model also confirmed the negative correlation by
showing a downward fitted curve in PM10 deposition flux with
increasing precipitation beyond 750 mm. In contrast, PM10 deposition
flux revealed a significant moderate positive relationship with both land
surface temperature (r = 0.42, p < 0.01) and wind pressure (r = 0.39, p
< 0.01) (Fig. 5). Similarly, the positive correlations between PM10
deposition flux, LST and wind pressure were also demonstrated by the
GAM model, depicting upward fitted curve of both the LST and wind
pressure above 17 ◦C and 8 kPa respectively (Fig. 6). PM10 deposition
flux and population density revealed a weak positive (r= 0.19, p< 0.01)
correlation indicating higher population density in studied cities is
associated with higher PM10 concentration (Fig. 5). The GAM model
also showed an upward trend in PM10 deposition flux with increasing
population density (Fig. 6).

3.3. Impact of neighbourhood green space percentage on PM10 deposition
flux and assessment of the model performance

The GAM model analysis showed a non-linear association between
neighbourhood green space percentage and PM10 deposition flux
(Effective Degrees of Freedom = 3.15, Reference Degrees of Freedom =

3.95, Chi-square = 19.53, p-value = 0.0006). However, the fitted curve
in the GAM model exhibited a downward trend above 27 % of green
space, where it fell below the horizontal line at zero. Initially, the fitted
curve of PM10 deposition flux showed an upward trend and exceeded
the horizontal line at zero when the green space percentage ranged
between 10 and 20. Eventually, the fitted curve showed a downward
trend above the 20 % green space level (Fig. 7).

The model explained the total deviance of the response variable of
about 42.1 %. After adjusting for the number of predictor variables, the
model explained 57 % of the variation in the response variable (R2 =

0.57). The restricted maximum likelihood (REML) value of the model
was − 390.97. The goodness of model fit is better assessed through the
AIC. The model with the lowest AIC value of − 1485.3 was considered
the best (Supplementary Table 15). The scale estimation of the model
was 1. The assessed quantile-quantile (QQ) plot showed a slight devia-
tion of the residuals from the normal distribution. The deviation of re-
siduals was not statistically significant (Kolmogorov-Smirnov test: P =

0.26 > 0.05) (Fig. 7 B).

3.4. Comparison of emission sources – roadside vs industrial sites in
relation to park sites as particulate matter sink

The PM10 concentration, PM10 deposition flux, and PM10 dry
deposition differed significantly among industrial (Brent-Neasden),
roadside (Islingdon-Holloway Road), and park (Camden-Bloomsbury)

A. Islam et al. Science of the Total Environment 955 (2024) 176770 

6 



Fig. 4. The amount of greenspace percentage and variation of PM10 concentration over 20 years (2000–2020) within buffer area across sample sites; (A) for Berlin,
(B) for London, (C) for Stockholm, (D) for Hong Kong, (E) for New York, (F) for Melbourne, (G) for Los-Angeles and (H) for Vancouver. The characters enclosed with
parentheses in every figure indicate the sample site ID.
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sample sites during the vegetation period (Supplementary Table 13).
The difference in PM10 concentration between the industrial and

park sites was 20.54 μg/m3 with P a value <0.001. The difference be-
tween the roadside and park sites was 5.41 μg/m3, and the difference
between industrial and roadside sites was 15.12 μg/m3. Similarly, sig-
nificant differences were also observed in PM10 deposition flux and dry
deposition during the vegetation period. The highest difference was
recorded between park and industrial sites (difference= 0.132 μg/m2/h,
and difference = 1974.9 μg/m2/day respectively) (Fig. 8).

The highest mean PM10 concentration (40.89 μg/m3) and PM10
deposition flux (0.26 μg/m2/h) were observed in the industrial sampling
site. Conversely, the park sample site (20.17 μg/m3) had the lowest
PM10 concentration and PM10 deposition flux (0.131 μg/m2/h) (Fig. 8
A). Similarly, the largest mean amount of PM10 dry deposition
(2723.87 μg/m2/day) was measured at the industrial sample site, fol-
lowed by the roadside (852.94 μg/m2/day) (Fig. 8 C).

4. Discussion

4.1. The variation of PM10 concentration, PM10 deposition flux, and
impacts of population density and climatic variables

Particulate matter is generally influenced by climatic variables,

emissions, and chemical transformations (Seinfeld and Pandis, 2016).
More than that, higher population density leads to higher sources of
PM10 emissions (Baek and Ban 2020). As a result, the spatial distribu-
tion of PM shows high variability in space and is associated with the
distribution of emission sources (Giorgi and Meleux, 2007). Conse-
quently, PM10 concentration and deposition flux varied across our
sample sites, despite all being within the same city. For instance, the
sample sites of Hong Kong had the highest population density, located in
a sub-tropical climate region characterized by hot and humid summers,
and cool and dry winters. All sample sites in Hong Kong showed a
decreasing trend of PM10 levels over the studied period, even though
the amount of green space percentage did not show an increasing trend
in the two sample sites. Similarly, the warm, hot summers of the sample
sites in Los Angeles showed higher concentration and deposition flux
compared to sample sites in London located in a warm temperate and
Stockholm located in a humid continental climate, despite both cities
having higher population density than Los Angeles.

Sample sites in Stockholm, with shorter, cooler summers and long,
cold winters, likely have lower particulate matter concentrations and
deposition than those in London and Berlin, despite Stockholm's higher
population density. Although Berlin and London share similar Köppen
climate classifications, London had lower average PM10 levels (21.73
μg/m3) and deposition flux (0.14 μg/m2/h) compared to Berlin. This

Fig. 5. The Spearman correlation coefficients among PM10 deposition flux, climatic variables, and population density.
The population density unit persons per square kilometre.
In the above plot: The distribution of each variable is shown on the diagonal.
On the bottom of the diagonal: the bivariate scatter plots with a fitted line are displayed.
On the top of the diagonal: the value of the correlation plus the significance level as stars.
Each significance level is associated with a symbol: p-values (0, 0.001, 0.01, 0.05, 0.1, 1).
<=> symbols ("***", "**", "*", ".", " ").
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might also explain the general trend of decreasing particulate matter
levels over all the sample sites, with the increase in awareness and
countermeasures for reducing anthropogenic emissions. However, our
findings are also in line with previous research such as Baró et al. (2015),

who reported PM10 levels and dry deposition in Berlin (30.1 μg/m3 and
19 kg/ha year) were higher than in Stockholm (28.5 μg/m3 and 10.9 kg/
ha year). Moreover, previous research showed that emissions vary
across core metropolitan areas worldwide. For instance, Wei et al.

Fig. 6. (A), (B), (C), (D) are the partial effects of wind pressure, LST, precipitation, and population density respectively on PM10 deposition flux.

Fig. 7. (A) The partial effects of greenspace percentage on the PM10 deposition flux within a 1 km buffer area around air quality monitoring stations in sample sites.
The tick marks on the x-axis are observed data points of the greenspace percentage and the x-axis indicated that no sample site with greenspace less than around 10
%. The y-axis represents the partial effect of greenspace percentage on PM10 deposition flux. The solid line represents the fitted curve of predictor variables. The
shaded area indicated the 95 % confidence intervals. (B) Quantile - Quantile plot of observed residuals generated from GAMmodel (see supplementary Fig. 3 for GAM
model check with residuals).
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(2021) found that Stockholm had lower fuel combustion emissions (60
%) compared to North American cities (60–80 %) between 2009 and
2012. Los Angeles had higher transport emissions than Stockholm,
Melbourne, and New York, but lower than Hong Kong. Our results are
consistent with the city index proposed by the Greater London Authority
(2014) regarding PM10 levels in different cities, showing Vancouver had
the lowest PM10 levels among 36 cities, while Stockholm had lower
PM10 than London, and Berlin had higher. Hong Kong had the highest
PM10 levels among all studied cities.

More importantly, the present study showed that climatic variables
e.g., precipitation, LST, and wind pressure along with population den-
sity have a significant impact on the PM10 deposition flux. Population
density surrogates higher emissions that result in higher amounts of
PM10. Consequently, we found a positive association between deposi-
tion flux and population density. Similarly, Dong et al. (2019) identified
a significant positive relationship between population density and PM10
concentrations. The negative relationship or washout effect of precipi-
tation and positive relations with wind pressure is consistent with the
previous studies (Faisal et al., 2022; Li et al., 2019). In contrast to our
findings, a negative effect of temperature was reported by Faisal et al.
(2022) on the pollutant concentration during the winter season in
Dhaka. Bangladesh is generally characterized by a humid and tropical
climate, with distinct wet and dry seasons. The country typically expe-
riences a monsoon season with heavy rainfall from June to October and
a drier winter season fromNovember to February. During the winter, the
climate in Bangladesh is drier than during the monsoon season. Simi-
larly, Li et al. (2019) reported negative correlations between tempera-
ture and pollutant concentration during spring and autumn over most of
the regions of China. However, Li et al. (2019) reported positive re-
lations during summer and winter. Our observed positive relationship
between land surface temperature and PM10 deposition flux may be
attributed to the assumption that higher temperatures can lead to soil
drying, which leads to higher lifting of dust particles into the sur-
roundings. Since surface moisture and surface temperature are inversely
related (Tang and Chen, 2017). These findings have important impli-
cations, particularly with the advent of significant soil drought (Rahman
et al., 2021), and increasing urban heat islands (Rahman et al., 2022;
Rahman et al., 2023) in the near future. Therefore, a climate-sensitive
urban greening or nature-based solution might have multi-
dimensional benefits of reducing urban heating and PM concentration
(Pauleit et al., 2011).

4.2. The impact of neighbourhood green space percentage on PM10
deposition flux

Our study revealed a non-linear association between neighbourhood
green space percentage and PM10 deposition flux. There are

inconsistent results in the literature regarding the role of urban green
spaces in particulate matter removal. While studies like Qiu et al. (2018)
and Manes et al. (2016) showed a significant impact of green spaces on
air quality improvement, Venter et al. (2024) found only a minor decline
(0.8 % over ten years) in urban air pollution and no significant effect at
street level. Thus, our findings of increasing PM10 with <20 % green
space warrant further investigation and might also hint at the fact that
other land uses rather than green spaces contribute to higher particulate
matter concentration. The scale of our study might also cause the
anomalies as reported by Venter et al. (2024). Nevertheless, what is
missing is the threshold that depicts the impact of green spaces. Our
model suggests that at least 27 % of green spaces is needed to signifi-
cantly reduce the particulate matter flux, although the minimum
threshold can vary depending on the specific urban contexts.

After that, deposition flux starts decreasing below the zero fitted line
to consistently increase the PM10 deposition rate (Fig. 7 A). However, it
is important to note that we did not have quantitative measurements to
determine the extent of the deposition flux reduction. Moreover, urban
surface roughness contributes to higher PM concentration (Draxler
et al., 2001). Further studies are needed for a detailed understanding of
the extent of PM10 concentration and deposition flux and the role of
green spaces in improving air quality. Furthermore, it should be kept in
mind that the PM10 deposition velocity (Vd) is not solely dependent on
the Leaf Area Index (LAI), but it is also influenced by site-specific tem-
poral dynamics (Terzaghi et al., 2013). In our study, we used the same
Vd value for all sample sites that could vary among sample sites.

However, based on these findings, it can be affirmed that urban
vegetation plays an important role in reducing PM10 levels. Studies
have shown that green space can cause PM to alter routes, speed, and
other properties, or to be displaced from the air temporally or perma-
nently (Diener and Mudu, 2021). Additionally, it is important to
consider the climatic variables that affect the reduction of PM10 depo-
sition flux to understand the magnitude of the impact of green space
across different cities in contrasting climate zones. Thus, cities in
warmer climate zones might require an additional amount of green
spaces to combat the higher PM concentration since higher LST will
increase the suspended particular matter concentration.

4.3. Strategic placement of urban green spaces: key to enhancing air
quality

The PM10 concentration, deposition flux, and dry deposition were
compared across different proximities to emission source types, e.g.
industrial, roadside, and park in London. The emission from local
transportation, particularly private and public vehicles, emits a large
amount of particulate matter. As a follow-up, traffic is recognized as a
common source of particulate matter (Sgrigna et al., 2015).

Fig. 8. (A). The mean PM10 concentration, (B) deposition flux, and (C) dry deposition in studied sample sites in London during the vegetation period from 2000
to 2020.
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Consequently, the sample site in the roadside areas experienced higher
levels of PM10 concentration and deposition flux compared to the
sample site in the park. In the current study, the sample site in the in-
dustrial area was particularly exposed to coal and oil combustion in the
industrial process along with the frequent presence of heavy vehicles
which could exacerbate the emission (Wu et al., 2013). Those heavy
vehicles and frequent stopping starting of vehicles might lead to higher
emissions in congested areas. Our findings showed that the mean PM10
concentration (36.25 μg/m3) was higher in industrial areas compared to
roadside (25.73 μg/m3) and park (20.17 μg/m3). These findings are in
line with previous research such as Millán-Martínez et al. (2021), who
reported that industrial sites demonstrated higher contribution sources
of PM10 concentration compared to road sites in Spain. Therefore, it is
important to prioritize vegetation in areas with higher particulate
matter concentration rather overall increase in the green cover to
improve the air quality in cities. However, direct implementation of
green covers such as dense tree rows might reduce the visibility of the
traffic, therefore, strategic plantings such as shorter vegetation close to
the curb and taller trees towards the center of the roadside islands might
reduce the trade-offs.

4.4. Limitation

It needs to be kept in mind that deposition velocity (Vd) is site-
specific and depends on canopy LAI, atmospheric conditions such as
wind speed, relative humidity and air temperature and is also affected
by site-specific temporal dynamics.

However, due to the scale of our study, we approximated the Vd
value as a single value. Because we could not find any remotely sensed or
monitoring data for site-specific Vd value for each city. Therefore, we do
acknowledge it is a source of uncertainty in our analysis.

Additionally, although the findings provide valuable insights into the
impact of the neighbourhood greenspace percentage, population density
and climatic variable on PM10 deposition flux across diverse climate
zones, the study did not include larger metropolises in tropical climates
due to the unavailability of consistent PM10 concentrations data. Future
research could be conducted solely in tropical climate zones changing
the temporal period.

5. Conclusion

This study investigated the influence of neighbourhood green space
density along with climatic variables and population density on PM10
deposition flux during the vegetation period over the twenty years
(2000− 2020) across studied cities located in different major climate
zones. Cities with higher population density in warmer and drier climate
zones tend to show higher PM concentrations since LST was positively
correlated to the PM concentration and deposition flux. Therefore,
highly populated cities in warmer climates might require a higher
amount of green spaces as land cover to confer the PM10 levels in the
future. Despite the decreasing trends of PM10 in all sample sites over the
studied years, there was no concurrent increasing trend of green space
percentages in a few sample sites. Therefore, reducing anthropogenic
emissions by countermeasures and increasing awareness needs to also be
considered and given priority. In the sample sites of London, the in-
dustrial site showed higher concentration and deposition flux values,
including dry deposition. Thus, strategically placing urban green spaces
(i.e., as close as possible to the emission source) is more important than
merely increasing green cover.

Our study suggests the minimum threshold of 27 % of land cover
with green spaces to have a significant effect on air quality by reducing
PM10 flux, of course, the figure may vary depending on the specific
urban contexts. In line with other climate change mitigation measures,
for example, Rahman et al. (2022, 2024) prescribed at least 30–40 %
green spaces to mitigate urban heat; our study is also in good alignment
with the threshold for better air quality. Moreover, further investigation

into including quantitative aspects of urban surface forms and trans-
portation networks is still necessary.
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Pražnikar, Jure, 2017. Particulate matter time-series and Köppen-Geiger climate classes
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