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 A B S T R A C T

Urbanization transformed global landscapes, intensifying Urban Heat Islands (UHI), further exacerbated by 
climate change. Sustainable green urban design offers cooling effects through evapotranspiration and shading 
with varying effectiveness across regions. This study investigates the role of urban vegetation, particularly 
trees and grassland, in moderating temperatures across nine European cities from 40◦N to 53◦N, with 
Temperate to Mediterranean climates. High-resolution Land Surface Temperature (LST) data, downscaled using 
a Gradient Tree Boosting model, were integrated with the De Martonne Aridity Index and a Contribution 
Index (CI) to quantify vegetation-driven cooling across a latitudinal gradient. The results show that tree and 
grassland cooling effects are not spatially uniform: vegetation in cooler, less arid cities provides stronger 
thermal mitigation. Regression analysis using Random Forest and Generalized Additive Models revealed that 
vapor pressure deficit (VPD) most strongly influences vegetation cooling, followed by precipitation and solar 
radiation. Even similar vegetation types demonstrate differing cooling performance depending on local climatic 
conditions. This study emphasizes the importance of optimizing urban greening strategies to geographic and 
climate-specific contexts, offering actionable insights for designing climate-responsive green infrastructure to 
reduce urban heat.
1. Introduction

More than half of the world’s population resides in urban areas, pro-
jected to reach 70% by 2050 (Leong et al., 2018). Summer temperatures 
have intensified worldwide, with Europe experiencing a remarkably 
rapid and faster increase than other regions (Pardo & Paredes-Fortuny, 
2024; Tejedor et al., 2024). This is a significant concern as extreme tem-
peratures cause substantial increases in overall mortality rate and ad-
versely affect agriculture, water resources, and ecosystems. The health 
impacts are especially severe in urban areas. Urban residents are in-
creasingly burdened by extreme heat due to rapid urbanization and 
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global climate change. This exacerbates the formation of urban heat 
islands (UHIs), areas with significantly higher temperatures in urban 
areas than their rural surroundings (Krayenhoff, Moustaoui, Broadbent, 
Gupta, & Georgescu, 2018; Mora et al., 2017). UHI-based studies have 
shown that the intensity of UHIs, varying between 0.8 to 9.0 ◦C
during single days (Hartmann et al., 2023; Manoli et al., 2019), and is 
more pronounced during summer, typically at night (Gartland, 2012; 
Rao, Tassinari, & Torreggiani, 2024b). This variation is influenced by 
factors such as urban size, local climate, urbanization gradients, and 
impervious surface areas (Estoque, Murayama, & Myint, 2017; Varquez 
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& Kanda, 2018). However, there is a gap in understanding how these 
varied UHI findings can be effectively applied to urban interventions, 
such as green infrastructure, to reduce urban heat across global cities 
with varying climate and weather conditions (Manoli et al., 2019).

Urban green spaces (UGS) can lower temperatures in their vicin-
ity through evapotranspiration, shading, and increased albedo, which 
measures how much solar energy a surface reflects (Bowler, Buyung-
Ali, Knight, & Pullin, 2010). Various types of UGS, including parks, 
grass, green roofs, and green walls, have been extensively researched 
and highlighted as strategies for mitigating UHI effects. These studies 
have employed different methods like field measurements, remote 
sensing, and model simulations (Balany, Ng, Muttil, Muthukumaran, 
& Wong, 2020; Bartesaghi-Koc, Osmond, & Peters, 2020; Saaroni, 
Amorim, Hiemstra, & Pearlmutter, 2018). The urban morphological 
setting and UGS have been extensively studied recently. For instance, 
it has been found that the size of the green area is critical in reducing 
heat (Zhang, Ge, Wang, & Dong, 2025). The cooling effect of green–blue 
spaces varies with landscape density. In low-density areas, dispersed 
green–blue spaces are more effective, while large and organized green–
blue spaces are necessary in high-density areas (Sheng & Wang, 2024). 
The inequality in cooling adaptation depends on disparities in green 
space quality and quantity, driven by factors such as socioeconomic 
conditions, urban morphology, and environmental characteristics (Li 
et al., 2024). Further in another study (Xu, Jin, Ling, Sun, & Wang, 
2025), green space morphological spatial patterns have been found 
to negatively impact the UHI intensity with ‘‘core’’ areas being the 
most effective in reducing UHI. Assessing the combined effect of urban 
buildings and green spaces on the urban thermal environment (Chen 
et al., 2023; Kim, Yeom, & Hong, 2025) showed that integration of 
high-rise building and green spaces together mitigates the UHI signifi-
cantly. Whereas compact low-rise and heavy industry areas contribute 
the least to the cooling benefits (Liu et al., 2024). However, the cooling 
effect of UGS varies significantly depending on the functional type of 
green space along with surface roughness and climatic and edaphic 
variables such as atmospheric dryness, and soil moisture (Manoli et al., 
2019). In general, trees with higher and denser canopies provide shad-
ing, which reduces ground heat flux and lowers surface temperature. 
Additionally, they influence convection, therefore reducing the air tem-
perature (Rahman et al., 2021). Simultaneously, trees with many layers 
of leaves transpire significantly more compared to grass or shrubs, 
hence, higher air cooling (Rahman, Moser, Rötzer, & Pauleit, 2019). 
Thus, urban trees generally contribute more significant cooling than 
grasslands (Bartesaghi-Koc et al., 2020), especially at higher tempera-
tures and in drier climates (Manoli et al., 2019). However, the intensity 
of cooling can vary considerably even within the same cities (Pattnaik 
et al., 2024). Despite this, most studies on UGS cooling effects are 
still limited to specific locations and particular types of green spaces. 
Additionally, the use of non-comparable methods (Balany et al., 2020; 
Bartesaghi-Koc et al., 2020; Koc, Osmond, & Peters, 2018), restricts the 
ability to generalize findings across diverse urban areas globally. For 
example, seasonal cooling from green–blue infrastructure varies with 
its width and area, while is strongest near blue spaces. The cooling 
follows a gradient in buffer zones and differs in agricultural areas 
based on urban proximity (Abd-Elmabod, Gui, Liu, Liu, Al-Qthanin, 
Jiménez-González, & Jones, 2024; Zhao et al., 2023).

Studies on urban thermal environments have followed various ap-
proaches over time. Traditional approaches relied on ground-based 
measurement devices, like spectroradiometers, which required physi-
cal presence at each study location (Thome, 2001). However, remote 
sensing techniques, which allow for global data capture without direct 
contact, have largely replaced these methods. Satellite images obtained 
through remote sensing provide macroscale data, covering large areas, 
and facilitating global-scale studies (Guo, Zhang, & Zhu, 2015). While 
collecting global data using ground measurements for the same time 
period is challenging, satellite datasets make this process easier, faster, 
and more cost-effective. Land Surface Temperature (LST) is a crucial 
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parameter for studying the impacts of climate change and identifying 
temperature anomalies across various scales (Li & Duan, 2018). It 
is widely used in Surface Urban Heat Island (SUHI) studies, offering 
more detailed insights than meteorological stations, which primarily 
measure near-surface air temperatures. Unlike atmospheric UHI (es-
timated using air temperature), SUHI is less complex as it primarily 
depends on surface properties and materials (Pyrgou, Hadjinicolaou, 
& Santamouris, 2020). The advancement of thermal remote sensing 
has enabled satellite data to provide information on UHI with spatial 
resolutions ranging between 30 m and 500 m (Weng, 2009). Satellites 
such as Landsat, Sentinel, MODIS, and ASTER are commonly used for 
LST studies (Rao, Singh, & Pandey, 2021; Rao, Tassinari, & Torreggiani, 
2024c; Wulder et al., 2016). The first satellite-based UHI observations 
were made by Krishna (1972), and since then, many researchers have 
developed various methods to assess LST and UHI variability (Imhoff, 
Zhang, Wolfe, & Bounoua, 2010; Tran, Uchihama, Ochi, & Yasuoka, 
2006; Yue, Liu, Zhou, & Liu, 2019).

However, the application of remote sensing methods used for study-
ing UHIs at a landscape scale is often limited due to the small-scale 
implementation of UGS in actual urban settings. While field measure-
ments and empirical observations of air temperature using sensors, 
weather stations, and thermistors provide direct insights into UGS’s 
immediate and actual effects on temperature (Bowler et al., 2010), 
this approach is expensive and time-consuming when applied glob-
ally (Kim, Khouakhi, Corstanje, & Johnston, 2024). Satellite-derived 
LST is available at a 30-meter resolution, which is often too coarse to 
detect thermal stress within spatially heterogeneous urban landscapes. 
Recent studies have employed machine learning models to downscale 
satellite-derived LST to analyze urban thermal stress. In this study, 
we adopt a similar approach, producing high-resolution LST at a 10-
meter resolution using Landsat-derived LST and Sentinel-derived land 
use land cover indices. These innovations, alongside further integration 
of machine learning and deep learning techniques, e.g., dataset fusion 
for higher spatial/temporal resolution (Rao, Tassinari, & Torreggiani, 
2024a; Yao, Chang, Ndayisaba, & Wang, 2020), lead to an enhanced 
understanding of UHI mechanisms and their interaction with urban 
landscapes.

To effectively use urban green spaces, particularly tree planting, 
to address environmental injustices and health risks from rising tem-
peratures across different climate settings. It is equally important to 
quantify how urban trees, in turn, influence local climate conditions. 
Recent studies have highlighted different functionality of the green 
spaces under varying climate conditions (Rahman et al., 2024). This 
variation makes it impractical to apply a uniform standard for green 
coverage and urban green space types across all climates. For example, 
the study done by Schwaab et al. (2021) concluded that variations in 
the cooling effects of vegetation were observed in cities with diverse 
climate types. The study found that urban trees significantly reduced 
LSTs, with the most significant reductions observed in Central Europe 
and smaller effects noted in Southern Europe. In drier climates, where 
water availability is limited, the cooling mechanisms of UGS shift, 
with shading becoming more crucial than transpiration. This is because 
trees, when exposed to high evaporative demand and limited soil 
moisture, often reduce transpiration to avoid hydraulic stress. As a 
result, the cooling effect of evapotranspiration diminishes during the 
hottest period of the day (Paudel, Naor, Gal, & Cohen, 2015; Rahman 
et al., 2021). Instead, shading from tree canopies plays a dominant 
role in cooling by significantly reducing solar radiation and providing 
thermal comfort, especially in regions where water availability is con-
strained (Bush et al., 2008; Martin-StPaul, Delzon, & Cochard, 2017; 
Shashua-Bar et al., 2023). This highlights the importance of shade in 
dry climates, where trees close their stomata to conserve water, limiting 
transpiration and causing cooling from shading to become the primary 
mechanism (Cheng, Peng, Dong, Liu, & Wang, 2022; Oren et al., 1999). 
As the cooling effects of urban trees differ based on climate type, trees 
in Mediterranean climates have different cooling effects (Seager et al., 
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2019) compared to those in temperate or tropical climates (Cheung, 
Livesley, & Nice, 2021). In both climate regions, more precipitation 
amplifies the cooling impact of grass-covered green spaces (Cheung 
et al., 2021). Consistently, urban trees in arid areas may require more 
water and management than those in more humid environments (Cheng 
et al., 2022). Studies have shown that transpirational cooling is more 
influential in temperate climates (Rahman et al., 2024, 2020); however 
in hot, dry regions, shading should be the primary consideration when 
planting trees, as it provides the most effective cooling where trees 
are more adapted to dry climate and stomatal resistance is high for 
transpiration cooling (Shashua-Bar et al., 2023).

Given the variation in climate with latitude gradient, this research 
aims to investigate whether there is a relationship between the impact 
of similar vegetation types within a latitudinal gradient of about 15◦. 
As highlighted, the cooling benefits of trees, even within the same 
functional type, can vary significantly due to the influence of the soil–
water–atmospheric continuum. Furthermore, urban topography, street 
orientation, and surrounding environmental geometry might influence 
this continuum, resulting in below-par cooling potential from UGI (Rah-
man et al., 2024). Therefore, major cities across a latitudinal gradient 
with similar vegetation functional types will help to understand the im-
pact of climatic variables, for instance, the temperature and moisture, 
when planning multifunctional UGI for current and future cities.

Hence, this study adopts a spatially structured fine-scale approach 
that is situated between global macroscale assessments and localized 
park-scale analyses. It investigates intra-urban variations across a lat-
itudinal gradient, introduces a modified contribution index, and inte-
grates climatic variables (VPD, precipitation, and solar radiation) using 
GAM and RF models to assess how climate mediates urban vegetation 
cooling, which is often missing in broader-scale studies.

Henceforth, the following are the main objectives of this study to 
address the research gaps highlighted:

1. To spatially evaluate vegetation-induced cooling effects within 
urban boundaries, comparing the efficacy of different vegetation 
types in mitigating urban heat across different populated cities.

2. To investigate the climatic influence on the urban vegetation-led 
cooling mechanism in different European cities across a 10–15◦
latitudinal gradient.

The following sections of the paper are as follows: Section 2 consist 
of details about the study area and methodology applied. Further, 
Section 3 consists of the results, followed by sections 4 of discussions 
and 5 of conclusions.

2. Methods

2.1. Study area

The case study focused on nine European cities across a latitudinal 
gradient from 40◦N to 53◦N in the Northern Hemisphere Fig.  1. The 
selected cities provide a diverse geographical context to analyze how 
different plant communities that can thrive under varying environ-
mental conditions but exhibit similarities in their overall structure 
contribute to cooling in various climate conditions and their role in 
mitigating UHI effects. The generalized vegetation types include decid-
uous trees (European oak, silver birch, and common hornbeam) which 
are well adapted to temperate climates; coniferous trees (Scots pine and 
Norway spruce) often used for aesthetic value and generally found in 
parks and urban green spaces; ornamental trees and shrubs (flowering 
cherry, common lilac and Norway maple) to enhance biodiversity; na-
tive and adapted species (European hornbeam, English Elm, and lime) 
found in urban settings to provide resilience to pollution and adaptivity 
to varying soil conditions; Mediterranean species (Aleppo pine, holm 
oak, and Mediterranean cypress), particularly found in southern cities 
amongst the case study selected cities, and are more drought resistant 
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and well-suited for warmer and drier climates. The cities—Hamburg, 
Hannover, Würzburg, and Munich in Germany; Budapest and Szeged 
in Hungary; and Milan, Imola, and Naples in Italy. Fig.  1 —span a 
range of climates from temperate oceanic to humid subtropical to hot 
Mediterranean, according to the Köppen-Geiger classification.

The German cities Hamburg (53◦N), Hannover (52◦N), Würzburg 
(49◦N), and Munich (48◦N) are characterized by temperate oceanic 
climates (Cfb), with relatively mild summers and winters. The ur-
banization level in Hamburg is high, with a dense urban fabric, nu-
merous parks, and green spaces interwoven within its landscape (can 
be witnessed in the LULC distribution across the spatial gradient: 
Fig.  4). Further, Hannover’s urbanization is characterized by a mix 
of residential, industrial, and commercial areas with significant green 
infrastructure. The city’s climate resembles Hamburg’s, with mild to 
warm summers and relatively moderate winters. Moving further south, 
Würzburg is located at 49◦N in Bavaria and has a temperate oceanic 
climate (Cfb), though it is closer to the border of a humid subtropical 
climate (Cfa). Würzburg’s landscape is dominated by vineyards and 
rolling hills, reflecting a region where agricultural land use is signif-
icant. The urbanization in Würzburg is moderate (based on Fig.  4), 
with a blend of historical architecture and modern developments. The 
city’s climate is slightly warmer and drier than the northern cities. 
Munich, located at 48◦N, also in Bavaria, experiences a temperate 
oceanic climate (Cfb) with continental influences. The city is known 
for its high level of urbanization and extensive green spaces, including 
the famous Englischer Garten, one of the largest urban parks in the 
world. These cities, particularly Hamburg and Munich, have extensive 
urban green spaces crucial for mitigating UHI effects. The maritime 
influence in northern cities like Hamburg contrasts with the more 
continental climate of Munich, offering an opportunity to explore how 
these differences affect the cooling potential of urban vegetation.

In Hungary, Budapest (47◦N) and Szeged (46◦N) experience hu-
mid subtropical climates (Cfa) with significant continental influences, 
leading to hot summers and cold winters. Budapest, being a densely 
urbanized capital city, and Szeged, with its sunnier and warmer cli-
mate, provide distinct settings to examine how vegetation can alleviate 
the intense UHI effects typical of such climates. The Italian cities Milan 
(45◦N) and Imola (44◦N) also have humid subtropical climates (Cfa) 
but differ in their levels of urbanization. Milan, a major industrial 
hub with significant urban sprawl, contrasts with the smaller, less 
urbanized Imola, which features a mix of land uses, including industrial 
and agricultural areas. These cities offer insights into how vegetation 
can be leveraged to cool urban environments in highly industrialized 
areas versus less dense settings. In addition, Naples has a Mediter-
ranean climate, featuring hot, dry summers and mild, rainy winters. 
The area’s climate is well-suited for cultivating crops such as olives 
and grapes, with the Tyrrhenian Sea playing a key role in shaping 
the local weather patterns. The city is dense, blending historical dis-
tricts, industrial zones, and modern developments. Suburban sprawl 
has also extended beyond the core city, contributing to pressure on 
transportation and housing.

Collectively, these cities provide a comprehensive framework for 
studying the interplay between vegetation, climate, and urbanization 
across different latitudes, helping to identify strategies for optimizing 
the cooling effects of greenery in urban areas.

2.2. Datasets used

This study expands across multiple cities along the latitudinal gra-
dient; therefore, satellite-derived land surface temperature has been 
used to acquire thermal data. Landsat is the freely available data 
with the thermal band to calculate the LST with the highest spatial 
resolution, i.e., at 30 m resolution. Still, this resolution is coarse in 
capturing the details of the landscape for small-scale urban settings. 
Therefore, the case study used a novel regression model approach to 
downscale the Landsat-derived LST from 30 m to 10 m resolution. 
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Fig. 1. Cities analyzed along the latitudinal gradient, where (i) Hamburg (53◦N), (ii) Hannover (52◦N), (iii) Wurzburg (49◦N), (iv) Munich (48◦N), (v) Budapest (47◦N), (vi) 
Szeged (46◦N), (vii) Milan (45◦N), (viii) Imola (44◦N), and (ix) Naples (40◦N). Where (a) denotes cities in Germany, (b) cities in Hungary, and (c) cities in Italy. All the cities 
have been zoomed at the concentric buffers (up to 8.5 km from the center).
Table 1
Data specifications.
 Data type Source/Detail Resolution/Details Time period Purpose  
 City Boundary ADM level 3 shapefile Highest scale 

available
Most recent
available

Defining LST 
downscaling boundary

 

 Satellite Data Google Earth Engine (GEE): 
Landsat 8/9, Sentinel-2

30 m (Landsat), 
10 m (Sentinel)

One day of 
August month 
in 2022–2023 
(varies by cloud cover)

LST calculation, 
model training, 
land use indices

 

 Land Cover Data GEE: Sentinel LULC 10 m 2021 Assess LULC type 
and area coverage

 

 Weather Data Various portals: DWD (Service, 2024a);
Hungry weather data portal (Service, 
2024b);
Lombardy weather data portal 
(Geoportal, 2024);
Emilia-Romagna weather data portal 
(Emilia-Romagna, 2024); 
Campania weather data portal (Portal, 
2024).

Annual averages, 
hourly measurements

Same day as the
LST data

Used for calculating 
independent variables in 
the regression model

 

 Tools GEE, GIS software 
(QGIS 3.28.8; ArcGIS Pro), 
Python geospatial packages

– – Data processing, 
analysis, and modeling.

 

Further weather data like annual precipitation, hourly solar radiation, 
air temperature, and relative humidity have been acquired from the 
weather portals of the respective country and region to assess the 
relative importance of several climatic and weather parameters towards 
the urban vegetation-led cooling effect. The data specifications are 
listed in Table  1.

Fig.  2 demonstrates the step-by-step workflow of the study. This 
study investigates the impact of urban vegetation on surface temper-
ature regulation across a city, from the center towards the periphery, 
up to an 8.5 km radius, to analyze the LULC spatial distribution in the 
cities across the latitudinal gradient depicting varied climatic character-
istics. The distance from the center to the periphery was uniformly fixed 
for all the cities, as the urban periphery of many investigated cities is 
not well demarcated beyond 8.5 km.

This approach was adopted to ensure comparability within the 
cities and to compare the urban to peri-urban transitions uniformly. 
Cities were selected along a continuous latitudinal gradient (40◦N–
53◦N) within a narrow longitudinal band in Europe, ensuring climatic 
consistency and comparable land use patterns to isolate vegetation-
driven cooling effects. City size was not a selection criterion, as the 
focus was on capturing latitudinal and climatic variation in a spatially 
controlled manner. The methodology integrates the downscaling of 
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LST, spatial analysis of land use types, landscape and climate-based 
indices, and assessing climatic parameters to evaluate urban cooling 
effects along a latitudinal gradient. The methodology can be broadly 
divided into four phases, each assessing either climate variable or 
landscape-type spatial analysis to thermal variability.

2.3. Super-resolving Land Surface Temperature (LST)

The first phase of the study focused on the downscaling of LST data. 
The downscaling process consists of utilizing the regression model that 
was trained on Landsat −8 derived indices (NDVI, NDBI, NDWI) and 
LST data at 30 m spatial resolution to predict the higher-resolution 
LST at 10 m spatial resolution using the Sentinel-2 derived indices 
(NDVI, NDBI, NDWI). The insights of using these three indices for 
super-resolving LST is based on the previous study (Rao et al., 2024a).

Cloud-free satellite data from August 2022 and 2023 was identi-
fied to ensure data quality. Using Landsat 8/9 imagery, the LST was 
calculated. A Gradient Tree Boosting (GTB) regression model was then 
trained using this Landsat-derived LST and land use indices. This ap-
proach is replicated based on a previous study, upgrading the regression 
model (Rao et al., 2024a). This model was subsequently employed to 
predict LST for another nearby date with available cloud-free Landsat 
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Fig. 2. Step-by-step method flow chart, where the computational link and source data have been explained for each variable used in the study.
data. The trained model was then validated against directly calculated 
Landsat LST values, achieving satisfactory accuracy. Following valida-
tion, the model was employed to predict the LST at a finer spatial 
resolution of 10 m using Sentinel-2-derived land use indices. The final 
downscaled LST maps were downloaded, marking it as the output of 
the first phase.

Algorithm 1 (refer to supplementary material, algorithm1), explains 
the training of the GTB model for downscaling the LST. GTB was 
preferred for this task because of its characteristics in modeling non-
linear relationships and its capture of complex patterns and interactions 
between variables, leading to more accurate and robust predictions.

2.4. Quantification of UGS contribution at the urban and latitudinal gradi-
ent

Further, spatial analysis was performed using each city’s down-
scaled LST maps and Sentinel-derived LULC data. Concentric buffers 
with a radius of 500 m were generated around the city center, ex-
tending up to 8.5 km within the city boundary. The 500 m scale is 
consistent with the previous urban climatology studies (Cao, Onishi, 
Chen, & Imura, 2010; Zhu et al., 2021). Each buffer’s area coverage 
of different LULC types (tree cover, grassland, built up, and others) 
and the corresponding mean LST for each class were calculated. The 
modified Contribution Index (CI) quantifies the relative effectiveness 
of each land cover type (trees, grassland, etc.) in cooling urban areas, 
normalized per unit of area. Many studies have focused on absolute 
LST differences; however, CI allows us to evaluate how effectively a 
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land cover type contributes to cooling within a defined urban space. 
The modified CI was defined as: 

𝐶𝐼 =
(𝐿𝑆𝑇class − 𝐿𝑆𝑇mean)

𝐴𝑟𝑒𝑎class
(1)

In Eq.  (1), LST𝑐𝑙𝑎𝑠𝑠 is the LST of a specific LULC type, LST𝑚𝑒𝑎𝑛
is the mean LST across all LULC types within a buffer (ring area), 
and Area𝑐𝑙𝑎𝑠𝑠 is the area coverage of that specific LULC type. The CI 
formulation is adapted and modified from the framework proposed 
by Ayanlade, Aigbiremolen, and Oladosu (2021), who originally used 
LST differences weighted by land cover proportions. In our modified 
formulation, CI is calculated as the difference between the LST of a 
specific land use/land cover (LULC) class and the mean LST of the 
buffer zone, normalized by the area of that LULC class within the buffer. 
Dividing by the area of the land cover type helped us to understand 
whether small green spaces provide disproportionately strong cooling 
effects (i.e., cooling efficiency), that is, per-unit area based analysis. 
This approach aligns with urban planning goals, where maximizing 
cooling benefit per unit area is essential due to limited land availability. 
In addition, it also helped normalize across buffer zones. These CI 
values were plotted across the buffers to assess these vegetation types 
concerning their role as sinks or sources of the urban temperature, 
spatially varying from the city center to its periphery. These CI values 
were plotted for all the cities at different latitudes to analyze this 
relation along the latitudinal gradient.

The delta of temperature difference between each type of urban 
vegetation (tree cover and grassland) and built-up, referred to as Delta 
LST from here, was calculated at the whole-city level for each city, 
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Fig. 3. Downscaled LST visualization in comparison to coarser resolution (Landsat derived) LST, along with the reference of Open Street Map (OSM) for the Englischer Garten 
and nearby area of Munich. Only one small area of a city has been shown for representation purposes.
to assess the thermal stress in the built-up areas. In addition, the 
De Martonne Aridity Index (DAI) was calculated to assess climatic 
aridity across each city, based on the formula given by Mavrakis and 
Papavasileiou (2013). The DAI is defined as: 

𝐷𝐴𝐼 = 𝑃
𝑇 + 10

(2)

In Eq.  (2), P is the annual precipitation (mm), and 𝑇  is the temperature 
(in ◦C). The DeltaLST and DAI were plotted across latitudinal gradients 
to identify trends and correlations between temperature differences and 
climatic aridity. Further, vapor pressure deficit (VPD) was calculated 
for each city using the following formula, as it measures how much 
more moisture the air can hold relative to what it currently has. 

𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑉 𝑎𝑝𝑜𝑟𝑃 𝑟𝑒𝑠𝑠𝑢𝑟𝑒(𝐸𝑆) = 0.61078 ∗ 𝑒𝑥𝑝
(17.27 ∗ 𝑇 )
(𝑇 − 237.15)

(3)

𝐴𝑐𝑡𝑢𝑎𝑙𝑉 𝑎𝑝𝑜𝑟𝑃 𝑟𝑒𝑠𝑠𝑢𝑟𝑒(𝐸𝐴) =
(𝑅𝐻)
(100)

∗ 𝐸𝑆 (4)

𝑉 𝑎𝑝𝑜𝑟𝑃 𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝐷𝑒𝑓𝑖𝑐𝑖𝑡(𝑉 𝑃𝐷) = 𝐸𝑆 −
(𝑅𝐻 ∗ 𝐸𝑆)

(100)
(5)

In Eqs. (3), (4), (5), 𝑇  is the air temperature in ◦C; RH is the relative 
humidity in %.

2.5. Statistical modeling and analysis

A combination of Generalized Additive Models (GAM) and Random 
Forest (RF) regressors have been utilized to analyze the impact of sev-
eral environmental variables—namely, Precipitation, Solar Radiation, 
VPD, and Latitude—on the variation of delta LST across different cities. 
For this analysis, we have focused on delta LST calculated as tem-
perature difference between built-up and trees. Their complementary 
strengths drove the choice of these two models: while GAM allows for 
the modeling of non-linear relationships and provides interpretability 
through smooth functions, RF offers a robust approach that can han-
dle complex interactions between variables without prior assumptions 
about their form. In addition, several other models were applied to the 
data, such as the support vector machine and gradient boost regression 
model, but these models could not perform well due to less data.

For the RF model, we used 100 trees with a random state set to 42 
for reproducibility. Random Forest is well-suited for capturing complex 
interactions between features due to its ability to fit multiple decision 
trees on various subsamples of the dataset. The GAM, on the other 
hand, allowed us to model the response variable as a smooth, non-linear 
function of the predictors. We included smooth terms for each of the 
four variables in the GAM, and the model fitting was performed using 
the ‘pygam‘ library in Python. The result was evaluated using standard 
performance metrics, including R-squared, Mean Absolute Error (MAE), 
and Root Mean Squared Error (RMSE). Additionally, for the GAM, we 
assessed the statistical significance of the predictors using p-values. All 
these explained statistical analyses were carried out on Google Colab 
for fast and seamless computations. All plots and results were analyzed 
along the latitudinal gradient to interpret the spatial variability and the 
relative impact of climatic conditions on urban cooling, emphasizing 
the role of vegetation.
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3. Results

3.1. Super resolved land surface temperature

The model developed using the GTB regression approach effectively 
downscaled LST to a 10-meter resolution using NDVI, NDBI, and NDWI 
as predictors. Fig.  3 demonstrates the difference between Landsat-
derived LST and super-resolved LST for a part of Munich city in the 
spatial domain and compares the detailing level between the two 
datasets. The validation process, involving the prediction of LST for 
different dates, demonstrated the model’s robustness. The predicted 
LST values were compared to LST derived directly from the Landsat 
thermal band, yielding consistent and strong performance metrics. The 
model’s correlation coefficient consistently exceeded 0.7 across all val-
idation checks, with specific metrics showing a correlation coefficient 
of 0.8469, an R-squared value ranging from 0.61 to 0.72, a 𝑝-value 
of <0.001, and a standard error of 0.0005. This strong correlation 
indicates the model’s reliability in capturing the relationship between 
LST and the predictor indices and the underlying trends and patterns 
between the variables.

3.2. Urban land cover distribution and surface temperature

The proportion of LULC types present in an area is one of the 
parameters for explaining the existing thermal conditions in an urban 
or rural setting. Therefore, Fig.  4 consists of bar graphs for studied 
cities, illustrating the percentage area of LULC types within buffers 
of increasing distance from the city center at the interval scale of 
500 m and the mean LST for the selected summer day in August 
2022 and 2023. The LULC types are categorized as tree cover (green), 
grassland (yellow), built-up area (red), and other types (gray). The bar 
graphs reveal a clear trend across all cities: built-up areas dominate 
near the city centers, contributing to higher mean LST, while tree 
cover increases with distance from the center, leading to a decrease 
in mean LST. This pattern highlights the significant role of tree cover 
in mitigating urban heat.

In most cities, such as Hamburg, Hannover, Munich, and Milan, 
the percentage of built-up areas is high near the center, often around 
70%–80%, and decreases steadily with distance. In contrast, tree cover 
is low but increases significantly beyond 4.5 km from the center. The 
increase in tree cover coincides with a noticeable reduction in mean 
LST, emphasizing the cooling effects of vegetation. In Hamburg, the re-
duction in temperature has been more pronounced in areas with higher 
tree cover, demonstrating a significant cooling trend with increased 
tree density. Similar trends are observed in Hannover, Munich, and 
Milan, where reductions in mean LST align with areas of greater tree 
cover, suggesting a direct relationship between LULC and local thermal 
conditions. This pattern is also evident in Wurzburg, where the higher 
percentage of tree cover near the city center leads to a more consistent 
reduction in LST, compared to other cities with varying tree distribu-
tions. In Budapest and Szeged, localized decreases in mean LST coincide 
with areas of increased vegetation, while in Napoli, lower vegetation 
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Fig. 4. Mean LST and LULC composition from city center buffer to periphery in cities between 53◦N and 40◦N latitude. The mean LST shown here represents a single-day 
observation in August of 2022 and 2023 (based on the availability of cloud-free satellite data for LST estimation). The color legend follows: green represents tree cover, yellow 
represents grassland, red represents built-up, and gray represents other categories.
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Fig. 5. Contribution Index (CI) across latitudinal gradient ranging between 53◦N to 40◦N where (a), (b), (c) and (d) represents CI of Tree on the specific day of August in the 
year 2022, CI of Trees on particular day of August in the year 2023, CI of Grassland on specific day of August in the year 2022, and CI of Grassland on specific day of August in 
the year 2023, respectively. The top row to bottom row in each heat map represents the nine cities (namely: Hamburg, Hannover, Wurzburg, Munich, Budapest, Szeged, Milan, 
Imola, and Napoli) located between 53◦N and 40◦N latitude.
cover in the center coincides with the elevated thermal conditions. 
Across all cities, these patterns highlight the relationship between tree 
cover and temperature, showcasing the impact of vegetation type and 
its coverage in mitigating heat stress.

3.3. UGS Contribution Index analysis within urban boundaries

Fig.  5 consists of four heat maps (as subplots) depicting the CI for 
trees and grasslands along a latitudinal gradient from 53◦N to 40◦N. 
The 𝑦-axis lists nine cities (Hamburg, Hannover, Wurzburg, Munich, 
Budapest, Szeged, Milan, Imola, and Napoli) arranged from top to 
bottom, and the 𝑥-axis represents the distance from the city center, 
ranging from 0.5 km to 8.5 km with increments of 0.5 km. This index 
helps to examine whether a landscape, in relative terms, acts as a 
thermal sink (landscape type contributing most towards reducing LST) 
or a thermal source (landscape type contributing relatively very low 
towards LST reduction). Lower CI values indicate that the landscape is 
a sink to urban LST, contributing to cooling effects. In contrast, positive 
CI values suggest that the landscape acts as a source, contributing to 
urban heat.

Subplots Figs.  5a and 5b, which illustrate CI values for trees in 
August 2022 and 2023, show a more negative trend as the distance 
from the city center increases. This indicates a significant cooling effect 
of trees and their role as thermal sinks. In 2022, Szeged exhibited the 
most pronounced low CI at 4.5 km from the city center (−0.5), followed 
closely by Budapest with a CI of −0.58 at 3.5 km. However, by 2023, 
both cities experienced a reduction in their cooling effect. In contrast, 
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Hamburg consistently demonstrated a stable cooling effect across the 
spatial gradient in both years, with a slight increase in 2023, reflected 
by CI values of −0.61 at 3.5 km and −0.54 at 4.5 km from the city 
center.

Subplots Figs.  5c and 5d display the CI values for grasslands in 
August 2022 and 2023. The grasslands exhibit minimal influence on 
LST, with CI values generally near zero, indicating their limited role 
in cooling. Although the plots show a light green to yellow color 
gradient, localized cooling effects are observed in Würzburg, Hannover, 
and Szeged, where slightly lower CI values (−0.28, −0.14, and −0.15, 
respectively) are recorded. However, these low CI values are minor 
compared to those associated with tree cover. The overall trend remains 
consistent across both years, underscoring that grasslands contribute 
less significantly to heat stress mitigation than trees during daytime.

3.4. UGS surface temperature intensity and aridity index

Generally, grassland has a comparatively less significant impact on 
cooling; therefore, analyzing the thermal difference between trees and 
grassland compared with the built-up would estimate the quantified 
cooling potential of trees and grassland. Considering the assessment 
to understand the UHI dynamics, Fig.  6 compares the LST differences 
between built-up areas and two types of land cover, calculated for the 
entire city: tree and grassland. Delta-LST, the difference in temperature 
between built-up areas and tree cover versus built-up areas and grass-
land, measures the cooling potential of these vegetation types in urban 
environments. It highlights the relationship between Delta-LST and the 
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Fig. 6. Delta-LST denoting LST difference between built-up-tree and built-up-grassland; and De Martonne Aridity Index (DAI) concerning the Latitudinal gradient ranging between 
53◦N to 40◦N across different cities representing varying climate characteristics.
Fig. 7. Relative importance and variable impact of delta LST (temperature difference between built-up and trees) based on integrative modeling approach.
 

DAI across a latitudinal gradient between 53◦N and 40◦N. Usually, the 
climate shows a less arid and more humid trend while moving away 
from the equator, also indicated by the De Martonne Aridity Index plot. 
This shift in aridity and climate also correlates with the effectiveness 
of the urban trees and the grassland from higher to lower latitudes, 
demonstrated by Delta-LST.

3.5. Modeling for relative contribution of different variables over vegeta-
tional cooling

The relative importance plot (Fig.  7) aids in analyzing and visual-
izing the contribution and impact of various climatic factors (precip-
itation, solar radiation, VPD) and latitude on the change in the delta 
LST (representing the urban vegetation cooling, calculated as the tem-
perature difference between built-up and trees). The multicollinearity 
among the independent variables was assessed using a Variance Infla-
tion Factor (VIF) analysis. The VIF values for latitude, solar radiation, 
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VPD, and precipitation were below 2, indicating minimal collinearity 
(VIF<5; acceptable), demonstrating that each variable provides unique 
information. The right part of Fig.  7 shows the positive and negative 
impacts along with the quantitative contribution (better visible in the 
stacked column chart in the left part of the figure) of each independent 
variable to explain the variance in delta LST. The use of GAM in 
the integrated model analysis has enabled a clear classification of the 
independent variables’ contributions to the delta LST into negative and 
positive effects.

Statistically, the model demonstrated strong predictive performance,
evidenced by an R-squared value of 0.8326, indicating that the model 
explained approximately 83.26% of the variance in Delta-LST. The 
MAE and RMSE were calculated as 0.1583 and 0.1921, respectively, 
suggesting the model’s predictions were close to the observed values. 
The significant p-values (<0.0001) for all features were observed, 
suggesting that each predictor had a statistically significant impact on 
delta LST.
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The relative importance plot, derived from the RF model, reveals 
that VPD is the most significant contributor to delta LST (the tem-
perature difference between built-up areas and tree-covered areas), 
accounting for 39% of the total contribution. The direction of influence 
indicates that VPD, as the dominant variable, has a negative impact, 
suggesting that drier conditions are associated with a decrease in delta 
LST. Followed by VPD, solar radiation positively influences delta LST, 
with a relative importance of 24%, indicating that increased solar 
radiation amplifies the temperature difference. Meanwhile, latitude 
also shows a significant impact, and precipitation has shown less con-
tribution, probably because of the study time period, which witnessed 
contrasting precipitation patterns.

4. Discussions

One of the prerequisites for detailed thermal analysis at urban scale 
is the high-resolution thermal data with spatial variability. Therefore, 
this study has utilized regression-based model (GTB) that integrates 
high-resolution land use indices to downscale LST from 30 m to 10 m 
resolution. This allowed better attribution between thermal patterns 
and fine-scale LULC features, such as fragmented green spaces. Di-
rect field-based validation would provide the most reliable accuracy 
assessment for the predicted high-resolution land surface temperature 
(LST). However, this study showed a strong statistical agreement. The 
high R-squared value and strong correlation with the original computed 
LST support the credibility of the downscaled LST data (Maraun et al., 
2015; Rao et al., 2024a). This method is particularly suitable for studies 
where in-situ measurements are unavailable, allowing for a reasonable 
approximation of surface temperatures at finer spatial resolutions. It is 
to be noted here that this pixel-wise framework made GTB especially 
suitable given its flexibility and interpretability, as well as its efficiency 
in handling environmental data structures with high dimensionality 
but moderate sample sizes. More complex models such as CNNs (Con-
volutional Neural Networks), while powerful for image classification, 
were less appropriate here due to their reliance on large-scale image 
inputs and higher computational requirements, which were not aligned 
with our structured, tabular data setup. Also, aggregating predictions 
within larger zones (buffers) helped reduce local uncertainties and 
smooth high-frequency noise. This enhanced both statistical reliability 
and ecological relevance. This super-resolved LST has contributed to 
capturing the detailed thermal profiles of the land use land cover within 
the urban settings. It also supported quantifying UGS cooling effects 
across various geographic and climatic parameters, particularly along 
a small latitudinal gradient. This enhanced our understanding of UGS’s 
role in mitigating UHI in different urban settings.

4.1. LULC distribution and surface temperature across urban gradients

Similar to the previous studies (Rahman et al., 2022; Rao, Tassi-
nari, & Torreggiani, 2023), our study showed that the high built-up 
percentage near the city center progressively decreases towards the 
periphery, whereas the increased tree cover with distance from the 
center reflects the transition from dense urban cores to less built-up 
suburban zones. The mean LST (referred to daytime LST for this study) 
for 2022 and 2023 reveals a clear downward trend from the center 
towards the periphery in all cities, aligning with the corresponding 
increase and decline in tree cover and built-up areas. These results 
highlight the critical role of urban vegetation, particularly trees, in 
mitigating the UHI effect. As urban centers with high built-up densities 
exhibit the highest LST values (Rao & Gupta et al., 2021), tree cover 
becomes increasingly vital. The data further emphasizes integrating and 
maintaining substantial tree coverage in urban planning to combat ris-
ing city temperatures. Grasslands, despite contributing to green space, 
play a less significant role in temperature reduction (during daytime) 
compared to trees, whose shading and evapotranspiration processes 
make them far more effective in mitigating thermal stress (Rahman, 
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Moser, Gold, Rötzer, & Pauleit, 2018; Rahman et al., 2020; Schwaab 
et al., 2021). This LULC distribution and LST trends set the stage 
for further exploration of the thermal contributions of different urban 
vegetation types, as examined in the following section. The subsequent 
discussion on the CI of trees and grasslands delves deeper into the 
spatial and latitudinal variations in vegetation’s role in regulating urban 
microclimates. When considered alongside the LST and LULC data, 
these findings will provide a comprehensive understanding of how 
urban vegetation affects thermal dynamics at multiple spatial scales.

4.2. Role of urban morphology and vegetation types on cooling across urban 
gradients

The observed spatial variability in the CI of urban trees and grass-
land across the latitudinal gradient and urban-periphery transitions 
reflect microclimatic processes influenced by biophysical, urban mor-
phological, and atmospheric factors. Urban trees and grasslands exhibit 
distinct microclimatic behaviors that influence their contribution to 
temperature regulation. Trees consistently demonstrate a more sub-
stantial cooling effect, driven by higher evapotranspiration rates and 
canopy shading, underscoring their substantial role in acting as thermal 
sinks of heat Franceschi et al. (2023), Gherri (2023). This effect is 
slightly more pronounced in 2023 for some cities due to the compara-
tively higher annual precipitation recorded in 2023, which contributes 
to changes in soil-moisture reserve and affects the cooling capacity of 
trees. Factors like tree species and canopy density also influence this 
cooling (Rötzer, Rahman, Moser-Reischl, Pauleit, & Pretzsch, 2019). 
However, information on tree species composition for the study areas 
is either unavailable or beyond the scope of this study. In contrast, 
grasslands exhibit a much weaker cooling influence on daytime urban 
LST, with CI values remaining close to zero in both years. This is 
attributed to lower evapotranspiration, extremely short canopy height, 
and limited moisture retention due to shallow root systems. Conse-
quently, grasslands are less effective than trees in mitigating urban 
heat stress (Schwaab et al., 2021), at least where the grasses are not 
shaded (Rahman et al., 2021). These findings highlight the critical 
importance of tree cover in reducing thermal stress in cities, especially 
in densely populated areas. The minimal cooling impact of grasslands 
suggests that they should be integrated with other green infrastructure 
strategies to enhance urban cooling effectively (Rahman et al., 2021).

Cities at higher latitudes generally experience cooler summer tem-
peratures and more humid and moister climates, resulting in enhanced 
cooling capabilities of vegetation and demonstrating their effectiveness 
as thermal sinks. Conversely, cities closer to lower latitudes often face 
hotter, drier summers, leading to a diminished cooling capacity of 
vegetation, as discussed earlier. In extreme instances, grassland shows 
even positive CI, since they quickly dry out with higher atmospheric 
demand and lower topsoil moisture (Gill, Rahman, Handley, & Ennos, 
2013). Therefore, these cities might struggle with grassland in the 
future, requiring intensive green planning with tree cover. Careful 
consideration must be given when interpreting the results, particularly 
in relation to urban topography—such as street orientation—and the 
surrounding environment, including built geometry, urban design, and 
the proportion of green spaces, all of which significantly influence the 
mitigation of urban heat stress (Rahman et al., 2020). Sky View Factor, 
closely related to the urban canyon geometry, directly impacts solar 
exposure, shading duration, and wind flow, affecting evapotranspira-
tion rates and shading efficiency. For instance, narrower street canyons 
can reduce evapotranspiration rates, which, in lower latitudes, may 
benefit urban heat mitigation, where transpiration is already limited 
due to high temperatures and vapor pressure deficit. Conversely, in 
higher-latitude cities (e.g., Hamburg, Hannover), buildings tend to 
be less compact, and green spaces are often more continuous and 
better ventilated, enhancing transpiration. In contrast, southern cities 
(e.g., Naples) typically exhibit denser urban fabrics, reduced wind pen-
etration, and elevated VPD, which collectively constrain transpiration 
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processes. As a result, the cooling benefit of shade from trees becomes 
more critical than latent heat flux in these environments. Despite their 
strong mitigation potential, trees must be strategically placed to avoid 
obstructing major airflow pathways (Zölch, Rahman, Pfleiderer, Wag-
ner, & Pauleit, 2019). Moreover, incorporating a diversified vegetation 
structure—both horizontally and vertically—can enhance the resilience 
and effectiveness of urban heat mitigation strategies (Wang et al., 
2023).

4.3. Climatic interpretations of UGS surface thermal intensities and aridity 
trend within a narrow latitudinal range

As the study is focused on a small latitudinal gradient, which 
majorly falls under the temperate climate zones with generally sim-
ilar vegetation types, the UGS thermal intensity and aridity trends 
can be attributed to subtle shifts in microclimatic conditions rather 
than major biome transitions. The vegetation within this gradient is 
of similar functional types, demonstrating effective cooling through 
evapotranspiration. However, in general, the cooling effect reduces 
while moving towards lower latitudes mainly due to the higher aridity. 
Higher aridity is witnessed in the southern part during summer, which 
reduces the cooling capacity of the UGS, especially grasslands. The 
rate of evapotranspiration is impacted due to low soil moisture, as 
in arid climates, trees perform reduced evapotranspiration during the 
high heat to reduce their hydraulic stress, resulting in decreased Delta-
LST. As the latitude increases and DAI indicates lower aridity (closer to 
53◦N), more moisture supports greater evapotranspiration, resulting in 
increased cooling effect by trees. At the same time, vegetation, despite 
being of a similar functional type, remains more effective in the cooler 
and less arid northern part of the gradient, which becomes the opposite 
in the southern part and arid regions, thereby contributing to increased 
UHI effect (Lee, Mayer, & Chen, 2016). This variability suggests that 
local factors (e.g., climate, sky view factor, urban density, existing 
vegetation) significantly influence how different functional types of 
vegetation impact urban temperatures (Rahman et al., 2024).

Transpirational effectiveness is generally higher in higher-latitude 
cities with lower energy loads, as noted by Rahman et al. (2024); 
however; this is only true under conditions of low aridity. For instance, 
Würzburg, despite its higher latitude, experiences much drier condi-
tions than Italian cities. Furthermore under high atmospheric demand, 
the cooling benefits of trees are primarily attributed to shading, and 
is readily admixed from the surrounding atmosphere and become less 
discernible while capturing LST. It is to be noted that the LST captures 
the surface-level thermal scenario, while transpirational cooling is more 
efficiently measured through leaf-level observations. Usually, transpira-
tional cooling declines closer to the equator; the results indicate that 
atmospheric demand significantly influences cooling efficiency. This 
efficiency is determined not only by latitudinal position but also by 
geographical context.

4.4. Climatic contributors to urban thermal intensity and dynamics

The statistical modeling quantified the contribution of analyzed 
independent variables to the delta LST (difference in temperature be-
tween built-up and tree cover). It emphasized the complex interplay 
of climatic and geographical factors in shaping urban heat dynamics. 
Among these factors, VPD, a measure of air dryness and soil moisture, 
emerged as the most significant, influencing vegetation transpiration 
rates and affecting local thermal dynamics up to a certain thresh-
old (Shashua-Bar et al., 2023). This phenomenon is common in cities 
with significant vegetation cover where trees can moderate temper-
ature through transpiration. However, the cooling function of trees 
varies considerably based on the type of built-up design in heteroge-
neous urban landscapes (Pattnaik et al., 2024). Though it has been 
argued in the recent research that VPD is an important driver for 
transpirational cooling (Preisler et al., 2023), however, in this study 
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we found that at large scale VPD is influencing negatively at stand 
level. The negative contribution of VPD to delta LST underscores the 
importance of maintaining UGS, typically in the era of rising temper-
atures associated with climate change. Notably, high VPD conditions 
reflect a drier atmosphere, limiting trees’ cooling potential and making 
delta LST more dependent on other factors like solar radiation and local 
climatic conditions. Solar radiation was identified as the second most 
influential factor affecting delta LST. Higher latitudes, characterized by 
pronounced seasonal variations in solar radiation, influence thermal 
behavior of urban landscapes. For instance, cities in cooler climates at 
higher latitudes may have comparatively shorter growing seasons and 
less intense solar exposure. In contrast, built-up areas at lower latitudes 
retain more heat due to high intensity solar radiation (Oke, 1982). Lati-
tude’s impact reflects the cooling effects of milder climates and reduced 
radiative forcing at higher latitudes. Increased rainfall elevates mois-
ture levels, enhances evapotranspiration, and contributes in heat load 
mitigation. Therefore, this study highlights that cooling benefits from 
similar green space types vary significantly across cities. This variation 
is primarily influenced by latitude-driven climatic factors, particularly 
vapor pressure deficit, solar radiation, and precipitation. These findings 
underscore the need for climate-sensitive and location-specific green 
infrastructure planning.

The LST in this study was derived from cloudless days, while VPD 
and transpiration operate as instantaneous processes. Higher transpira-
tion rates are more closely linked to soil moisture reserves accumulated 
over the preceding days. Additionally, this analysis has been carried out 
on the typical summer days in 2 years with contrasting rainfall patterns 
(one almost dry and other wet), therefore are not truly represented, 
highlighting the scope for further research using time-series data to as-
sess more scenarios with similar and/or varying precipitation patterns. 
This underscores urban planners’ need to focus on moisture retention 
strategies and shade optimization in arid and high-VPD regions when 
designing green infrastructure.

4.5. Limitations of the study and future scope

The results highlight the effectiveness of the integrated model in 
capturing the complex interaction between the environmental variables 
and delta LST. Although solar radiation, VPD, and precipitation were 
directly measured, capturing specific climatic characteristics, other 
climatic and geographic factors (e.g., seasonal variations, land–sea 
contrasts, and altitude effects) are indirectly represented by latitude. 
Overall, the distinguished contribution of all the variables together 
serves as a broader geographic and climatic indicator, encompassing 
additional influences on temperature variations (Rahman et al., 2024). 
The findings underscore the utility of this modeling approach as a 
robust method for environmental modeling, particularly in settings 
where non-linear relationships are present and variable interactions 
are complex. However, it is essential to acknowledge the limitations of 
this study. The use of single-day LST data from peak summer periods 
does not capture seasonal or interannual variability in urban micro-
climates. Moreover, the training data quality and urban heterogeneity 
also play an important role in accurately predicting the high-resolution 
temperature data. Further, the statistical models used face notable 
limitations when applied to datasets with few data points. For example, 
GAMs may suffer from issues like overfitting and additivity assump-
tion, while RF can struggle with generalization due to its ‘‘black box’’ 
nature (Simon, Glaum, & Valdovinos, 2023). Therefore, for this study, 
smoothing parameters were determined by running multiple model 
iterations to ensure robustness, and feature selections were made after 
considering the collinearity issue amongst the variables to mitigate 
bias. In addition, the analysis relied on cloud-free satellite data from 
similar days, which restricted our ability to compare a larger number 
of cities.

To overcome this, future research should focus on generating high 
spatial and temporal resolution thermal datasets, providing more de-
tailed ground thermal information with good temporal coverage for 
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seasonal and annual analysis. A benchmark comparison with traditional 
resampling and downscaling methods (e.g.IDW, Kriging, which rely on 
spatial autocorrelation assumptions) would help validate and contex-
tualize the results. Although this was beyond the scope of the present 
study, it can be addressed through broader model evaluations in future 
work. Also hybrid modeling approaches should be explored that com-
bine interpretable models (e.g., GAM, RF) with deep learning methods, 
especially with larger, high-frequency datasets. Such advancements 
would facilitate analyses of cities across larger latitudinal gradients, 
encompassing a broader array of vegetation types and species compo-
sitions. In addition, incorporating urban morphological factors such as 
building height and street orientation, along with detailed vegetation 
classification, would be valuable for analyzing urban cooling impacts in 
upcoming research. The influence of groundwater and urban irrigation 
on vegetation cooling was not directly accounted for due to data limi-
tations, and broader climatic indicators (like VPD, aridity index) were 
used as proxies for moisture availability. Examining the incorporation 
of additional variables or more complex modeling techniques to further 
enhance the understanding of the factors driving temperature changes 
is also a potential future scope.

5. Conclusions

This paper has proposed a less explored side of the urban environ-
mental research, which is focused on quantifying the urban vegetation-
led cooling in different cities with diverse climatic conditions, assuming 
similar vegetation composition across the latitudinal gradient. Our find-
ings reveal that trees deliver a more pronounced cooling effect, particu-
larly in densely populated urban areas, where their capacity for shading 
and evapotranspiration can significantly mitigate the UHI effect. This 
cooling efficiency is not uniform; it is significantly influenced by both 
latitudinal location and geographical positioning along with local cli-
matic and landscape variables, such as temperature, precipitation, and 
urban morphology, which can vary widely even within small latitudinal 
ranges. Urban areas at higher latitudes (Northern part) experience high 
precipitation, increasing the moisture and increasing evapotranspira-
tional cooling. Additionally, higher latitudes experience comparatively 
less solar intensity, therefore less heated urban areas, while lower 
latitudes (southern part) receive comparatively less rainfall and higher 
exposure to intense solar heat, contributing to drier climates, where 
trees contribute to reducing temperature more through their canopy 
density and crown shadowing than through evapotranspiration.

These research findings will help policymakers and urban planners 
prioritize strategic planting and selection of species, particularly in 
areas close to city centers, to effectively mitigate UHI effects, espe-
cially considering the future changed climatic scenarios. The study 
also indicates the need for continued monitoring and adaptive man-
agement of urban green spaces to maintain their cooling benefits 
over time. The approach of quantifying the cooling benefits of trees 
in different landscape settings can help plan cooler, healthier urban 
environments and contribute to the overall resilience of cities to climate 
change. In urban environments, there is a growing need for climate- and 
landscape-specific strategies to mitigate heat. For example, introducing 
drought-tolerant tree species with dense canopies in arid climates could 
provide better shading, particularly in lower-latitude cities, where ur-
ban heat is more pronounced. These global analyses, including more 
cities covering longer latitudinal gradients in future studies, would 
allow us to develop more robust prerequisites for the efficient planning 
of urban vegetation concerning the city’s landscape characteristics and 
climatic conditions. The findings emphasize that urban green spaces 
do not offer uniform cooling benefits across different cities, even when 
similar in type. This variability, shaped by latitude-related climatic 
factors, suggests that green infrastructure strategies must be tailored 
to local environmental conditions. A one-size-fits-all approach can 
lead to suboptimal results in urban heat mitigation. Therefore, urban 
planning should prioritize location-specific assessments of green space 
12 
performance. Incorporating high-resolution thermal analysis into plan-
ning processes can enhance the effectiveness of interventions. Hence, 
this detailed analysis supports efficient planning for urban cooling in 
various urban settings, thus contributing to healthier, more resilient, 
and livable future cities.
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Appendix

Algorithm 1 Downscaling LST from 30m to 10m using GTB
Input: Landsat-8 image collection , Sentinel-2 image collection , 
Region of Interest 𝑅𝑂𝐼 , Date range [𝑡1, 𝑡2]
Output: Downscaled LST at 10m resolution
Step 1: Preprocessing

 (a) Apply cloud masking to  and  to remove cloudy pixels.
 (b) Filter both collections by 𝑅𝑂𝐼 and [𝑡1, 𝑡2].

Step 2: Compute Indices for Landsat-8 and Sentinel-2: NDVI, 
NDBI and NDWI
Step 4: Extract Landsat-8 LST: Compute Land Surface Temperature 
(LST) for Landsat-8 data and clip the LST image to 𝑅𝑂𝐼 .
Step 5: Prepare Training Data

 (a) Stack the computed indices and LST to create the Landsat-8 
training dataset 𝑡𝑟𝑎𝑖𝑛.

 (b) Sample 𝑡𝑟𝑎𝑖𝑛 within 𝑅𝑂𝐼 at 10m scale to generate features 
and target values.
Step 6: Train Gradient Tree Boosting Model
for each pixel 𝑝 in 𝑡𝑟𝑎𝑖𝑛 do
 Train the Gradient Tree Boosting (GTB) model using the indices 
as features and LST as the target.
end for
Step 7: Predict LST Using Sentinel-2 Data
for each pixel 𝑝 in Sentinel-2 derived indices do
 Apply the trained GTB model to predict LST at 10m resolution.
end for

Data availability

Data will be made available on request.



P. Rao et al. Sustainable Cities and Society 130 (2025) 106513 
References

Abd-Elmabod, S. K., Gui, D., Liu, Q., Liu, Y., Al-Qthanin, R. N., Jiménez-González, M. 
A., et al. (2024). Seasonal environmental cooling benefits of urban green and blue 
spaces in arid regions. Sustainable Cities and Society, 115, Article 105805.

Ayanlade, A., Aigbiremolen, M. I., & Oladosu, O. R. (2021). Variations in urban land 
surface temperature intensity over four cities in different ecological zones. Scientific 
Reports, 11(1), 20537.

Balany, F., Ng, A. W., Muttil, N., Muthukumaran, S., & Wong, M. S. (2020). Green 
infrastructure as an urban heat island mitigation strategy—a review. Water, 12(12), 
3577.

Bartesaghi-Koc, C., Osmond, P., & Peters, A. (2020). Quantifying the seasonal cooling 
capacity of ‘green infrastructure types’(GITs): An approach to assess and mitigate 
surface urban heat island in sydney, Australia. Landscape and Urban Planning, 203, 
Article 103893.

Bowler, D. E., Buyung-Ali, L. M., Knight, T. M., & Pullin, A. S. (2010). A systematic 
review of evidence for the added benefits to health of exposure to natural 
environments. BMC Public Health, 10, 1–10.

Bush, S. E., Pataki, D. E., Hultine, K. R., West, A. G., Sperry, J. S., & Ehleringer, J. R. 
(2008). Wood anatomy constrains stomatal responses to atmospheric vapor pressure 
deficit in irrigated, urban trees. Oecologia, 156, 13–20.

Cao, X., Onishi, A., Chen, J., & Imura, H. (2010). Quantifying the cool island intensity 
of urban parks using ASTER and IKONOS data. Landscape and Urban Planning, 96(4), 
224–231.

Chen, J., Kinoshita, T., Li, H., Luo, S., Su, D., Yang, X., et al. (2023). Toward green 
equity: An extensive study on urban form and green space equity for shrinking 
cities. Sustainable Cities and Society, 90, Article 104395.

Cheng, X., Peng, J., Dong, J., Liu, Y., & Wang, Y. (2022). Non-linear effects of 
meteorological variables on cooling efficiency of african urban trees. Environment 
International, 169, Article 107489.

Cheung, P. K., Livesley, S. J., & Nice, K. A. (2021). Estimating the cooling potential 
of irrigating green spaces in 100 global cities with arid, temperate or continental 
climates. Sustainable Cities and Society, 71, Article 102974.

Emilia-Romagna, R. (2024). Dexter. URL https://simc.arpae.it/dext3r/. (Accessed 12 
July 2024).

Estoque, R. C., Murayama, Y., & Myint, S. W. (2017). Effects of landscape composition 
and pattern on land surface temperature: An urban heat island study in the 
megacities of Southeast Asia. Science of the Total Environment, 577, 349–359.

Franceschi, E., Moser-Reischl, A., Honold, M., Rahman, M. A., Pretzsch, H., Pauleit, S., 
et al. (2023). Urban environment, drought events and climate change strongly affect 
the growth of common urban tree species in a temperate city. Urban Forestry & 
Urban Greening, 88, Article 128083.

Gartland, L. M. (2012). Heat islands: understanding and mitigating heat in urban areas. 
Routledge.

Geoportal, L. R. (2024). RegioneLombardia. URL https://dati.lombardia.it/. (Accessed 
12 July 2024).

Gherri, B. (2023). The role of urban vegetation in counteracting overheating in different 
urban textures. Land, 12(12), 2100.

Gill, S., Rahman, M., Handley, J., & Ennos, A. (2013). Modelling water stress to urban 
amenity grass in manchester UK under climate change and its potential impacts in 
reducing urban cooling. Urban Forestry & Urban Greening, 12(3), 350–358.

Guo, H.-D., Zhang, L., & Zhu, L.-W. (2015). Earth observation big data for climate 
change research. Advances in Climate Change Research, 6(2), 108–117.

Hartmann, C., Moser-Reischl, A., Rahman, M. A., Franceschi, E., von Strachwitz, M., 
Pauleit, S., et al. (2023). The footprint of heat waves and dry spells in the urban 
climate of Würzburg, Germany, deduced from a continuous measurement campaign 
during the anomalously warm years 2018–2020. Meteorologische Zeitschrift.

Imhoff, M. L., Zhang, P., Wolfe, R. E., & Bounoua, L. (2010). Remote sensing of the 
urban heat island effect across biomes in the continental USA. Remote Sensing of 
Environment, 114(3), 504–513.

Kim, J., Khouakhi, A., Corstanje, R., & Johnston, A. S. (2024). Greater local cooling 
effects of trees across globally distributed urban green spaces. Science of the Total 
Environment, 911, Article 168494.

Kim, J., Yeom, S., & Hong, T. (2025). Analyzing the cooling effect, thermal comfort, 
and energy consumption of integrated arrangement of high-rise buildings and green 
spaces on urban heat island. Sustainable Cities and Society, 119, Article 106105.

Koc, C. B., Osmond, P., & Peters, A. (2018). Evaluating the cooling effects of green 
infrastructure: A systematic review of methods, indicators and data sources. Solar 
Energy, 166, 486–508.

Krayenhoff, E. S., Moustaoui, M., Broadbent, A. M., Gupta, V., & Georgescu, M. (2018). 
Diurnal interaction between urban expansion, climate change and adaptation in US 
cities. Nature Climate Change, 8(12), 1097–1103.

Krishna, R. (1972). Remote sensing of urban heat islands from an environmental 
satellite.

Lee, H., Mayer, H., & Chen, L. (2016). Contribution of trees and grasslands to the 
mitigation of human heat stress in a residential district of Freiburg, Southwest 
Germany. Landscape and Urban Planning, 148, 37–50.
13 
Leong, D., Teo, K., Rangarajan, S., Lopez-Jaramillo, P., Avezum, A., Jr., Orlandini, A., 
et al. (2018). World population prospects 2019. Department of economic and 
social affairs population dynamics. New york (NY): United nations; 2019 (, 
accessed 20 september 2020). The decade of healthy ageing. Geneva: World Health 
Organization. World, 73(7), 362k2469,.

Li, Z.-L., & Duan, S.-B. (2018). Land surface temperature. Comprehensive Remote Sensing, 
5, 264–283.

Li, Y., Svenning, J.-C., Zhou, W., Zhu, K., Abrams, J. F., Lenton, T. M., et al. 
(2024). Green spaces provide substantial but unequal urban cooling globally. Nature 
Communications, 15(1), 7108.

Liu, Y., Chen, H., Wu, J., Wang, Y., Ni, Z., & Chen, S. (2024). Impact of urban spatial 
dynamics and blue-green infrastructure on urban heat islands: A case study of 
Guangzhou using local climate zones and predictive modeling. Sustainable Cities 
and Society, 115, Article 105819.

Manoli, G., Fatichi, S., Schläpfer, M., Yu, K., Crowther, T. W., Meili, N., et al. (2019). 
Magnitude of urban heat islands largely explained by climate and population. 
Nature, 573(7772), 55–60.

Maraun, D., Widmann, M., Gutiérrez, J. M., Kotlarski, S., Chandler, R. E., Hertig, E., et 
al. (2015). VALUE: A framework to validate downscaling approaches for climate 
change studies. Earth’s Future, 3(1), 1–14.

Martin-StPaul, N., Delzon, S., & Cochard, H. (2017). Plant resistance to drought depends 
on timely stomatal closure. Ecology Letters, 20(11), 1437–1447.

Mavrakis, A., & Papavasileiou, H. (2013). NDVI and E. de martonne indices in 
an environmentally stressed area (Thriasio Plain–Greece). Procedia Technology, 8, 
477–481.

Mora, C., Dousset, B., Caldwell, I. R., Powell, F. E., Geronimo, R. C., Bielecki, C. R., 
et al. (2017). Global risk of deadly heat. Nature Climate Change, 7(7), 501–506.

Oke, T. R. (1982). The energetic basis of the urban heat island. Quarterly Journal of 
the Royal Meteorological Society, 108(455), 1–24.

Oren, R., Sperry, J., Katul, G., Pataki, D., Ewers, B., Phillips, N., et al. (1999). Survey 
and synthesis of intra-and interspecific variation in stomatal sensitivity to vapour 
pressure deficit. Plant, Cell & Environment, 22(12), 1515–1526.

Pardo, S. K., & Paredes-Fortuny, L. (2024). Uneven evolution of regional European 
summer heatwaves under climate change. Weather and Climate Extremes, 43, Article 
100648.

Pattnaik, N., Honold, M., Franceschi, E., Moser-Reischl, A., Rötzer, T., Pretzsch, H., et 
al. (2024). Growth and cooling potential of urban trees across different levels of 
imperviousness. Journal of Environmental Management, 361, Article 121242.

Paudel, I., Naor, A., Gal, Y., & Cohen, S. (2015). Simulating nectarine tree transpiration 
and dynamic water storage from responses of leaf conductance to light and sap flow 
to stem water potential and vapor pressure deficit. Tree Physiology, 35(4), 425–438.

Portal, C. R. (2024). Campania weather data dashboard. URL https://centrofunzionale.
regione.campania.it#pages/dashboard. (Accessed 12 July 2024).

Preisler, Y., Grünzweig, J. M., Ahiman, O., Amer, M., Oz, I., Feng, X., et al. (2023). 
Vapour pressure deficit was not a primary limiting factor for gas exchange in an 
irrigated, mature dryland Aleppo pine forest. Plant, Cell & Environment, 46(12), 
3775–3790.

Pyrgou, A., Hadjinicolaou, P., & Santamouris, M. (2020). Urban-rural moisture contrast: 
Regulator of the urban heat island and heatwaves’ synergy over a mediterranean 
city. Environmental Research, 182, Article 109102.

Rahman, M. A., Arndt, S., Bravo, F., Cheung, P. K., van Doorn, N., Franceschi, E., et al. 
(2024). More than a canopy cover metric: Influence of canopy quality, water-use 
strategies and site climate on urban forest cooling potential. Landscape and Urban 
Planning, 248, Article 105089.

Rahman, M. A., Dervishi, V., Moser-Reischl, A., Ludwig, F., Pretzsch, H., Rötzer, T., 
et al. (2021). Comparative analysis of shade and underlying surfaces on cooling 
effect. Urban Forestry & Urban Greening, 63, Article 127223.

Rahman, M. A., Franceschi, E., Pattnaik, N., Moser-Reischl, A., Hartmann, C., Paeth, H., 
et al. (2022). Spatial and temporal changes of outdoor thermal stress: influence of 
urban land cover types. Scientific Reports, 12(1), 671.

Rahman, M. A., Moser, A., Gold, A., Rötzer, T., & Pauleit, S. (2018). Vertical air 
temperature gradients under the shade of two contrasting urban tree species during 
different types of summer days. Science of the Total Environment, 633, 100–111.

Rahman, M. A., Moser, A., Rötzer, T., & Pauleit, S. (2019). Comparing the transpira-
tional and shading effects of two contrasting urban tree species. Urban Ecosystems, 
22, 683–697.

Rahman, M. A., Stratopoulos, L. M., Moser-Reischl, A., Zölch, T., Häberle, K.-H., 
Rötzer, T., et al. (2020). Traits of trees for cooling urban heat islands: A 
meta-analysis. Building and Environment, 170, Article 106606.

Rao, P., Gupta, K., Roy, A., & Balan, R. (2021). Spatio-temporal analysis of land surface 
temperature for identification of heat wave risk and vulnerability hotspots in 
Indo-Gangetic Plains of India. Theoretical and Applied Climatology, 146(1), 567–582.

Rao, P., Singh, A., & Pandey, K. (2021). Time-series analysis of open data for studying 
urban heat island phenomenon: a geospatial approach. Spatial Information Research, 
29, 907–918.

Rao, P., Tassinari, P., & Torreggiani, D. (2023). Exploring the land-use urban heat 
island nexus under climate change conditions using machine learning approach: A 
spatio-temporal analysis of remotely sensed data. Heliyon, 9(8).

http://refhub.elsevier.com/S2210-6707(25)00389-0/sb1
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb1
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb1
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb1
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb1
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb2
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb2
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb2
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb2
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb2
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb3
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb3
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb3
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb3
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb3
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb4
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb4
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb4
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb4
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb4
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb4
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb4
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb5
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb5
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb5
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb5
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb5
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb6
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb6
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb6
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb6
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb6
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb7
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb7
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb7
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb7
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb7
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb8
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb8
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb8
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb8
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb8
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb9
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb9
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb9
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb9
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb9
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb10
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb10
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb10
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb10
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb10
https://simc.arpae.it/dext3r/
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb12
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb12
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb12
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb12
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb12
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb13
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb13
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb13
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb13
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb13
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb13
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb13
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb14
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb14
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb14
https://dati.lombardia.it/
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb16
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb16
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb16
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb17
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb17
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb17
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb17
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb17
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb18
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb18
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb18
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb19
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb19
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb19
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb19
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb19
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb19
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb19
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb20
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb20
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb20
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb20
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb20
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb21
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb21
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb21
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb21
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb21
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb22
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb22
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb22
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb22
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb22
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb23
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb23
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb23
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb23
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb23
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb24
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb24
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb24
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb24
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb24
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb25
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb25
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb25
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb26
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb26
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb26
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb26
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb26
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb28
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb28
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb28
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb29
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb29
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb29
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb29
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb29
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb30
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb30
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb30
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb30
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb30
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb30
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb30
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb31
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb31
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb31
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb31
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb31
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb32
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb32
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb32
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb32
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb32
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb33
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb33
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb33
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb34
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb34
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb34
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb34
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb34
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb35
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb35
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb35
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb36
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb36
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb36
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb37
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb37
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb37
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb37
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb37
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb38
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb38
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb38
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb38
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb38
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb39
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb39
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb39
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb39
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb39
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb40
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb40
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb40
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb40
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb40
https://centrofunzionale.regione.campania.it#pages/dashboard
https://centrofunzionale.regione.campania.it#pages/dashboard
https://centrofunzionale.regione.campania.it#pages/dashboard
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb42
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb42
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb42
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb42
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb42
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb42
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb42
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb43
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb43
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb43
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb43
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb43
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb44
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb44
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb44
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb44
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb44
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb44
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb44
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb45
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb45
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb45
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb45
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb45
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb46
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb46
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb46
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb46
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb46
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb47
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb47
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb47
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb47
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb47
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb48
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb48
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb48
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb48
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb48
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb49
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb49
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb49
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb49
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb49
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb50
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb50
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb50
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb50
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb50
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb51
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb51
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb51
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb51
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb51
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb52
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb52
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb52
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb52
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb52


P. Rao et al. Sustainable Cities and Society 130 (2025) 106513 
Rao, P., Tassinari, P., & Torreggiani, D. (2024a). Evaluating land use indices 
contribution for super-resolving surface temperature: An ablation study. In 
IGARSS 2024-2024 IEEE international geoscience and remote sensing symposium (pp. 
4040–4043). IEEE.

Rao, P., Tassinari, P., & Torreggiani, D. (2024b). A framework analyzing climate 
change, air quality and greenery to unveil environmental stress risk hotspots. 
Remote Sensing, 16(13), 2420.

Rao, P., Tassinari, P., & Torreggiani, D. (2024c). Unveiling climate dynamics: 
An in-depth analysis of temperature anomalies in Italian climatic regions. In 
IGARSS 2024-2024 IEEE international geoscience and remote sensing symposium (pp. 
3889–3892). IEEE.

Rötzer, T., Rahman, M., Moser-Reischl, A., Pauleit, S., & Pretzsch, H. (2019). Process 
based simulation of tree growth and ecosystem services of urban trees under present 
and future climate conditions. Science of the Total Environment, 676, 651–664.

Saaroni, H., Amorim, J. H., Hiemstra, J., & Pearlmutter, D. (2018). Urban green 
infrastructure as a tool for urban heat mitigation: Survey of research methodologies 
and findings across different climatic regions. Urban Climate, 24, 94–110.

Schwaab, J., Meier, R., Mussetti, G., Seneviratne, S., Bürgi, C., & Davin, E. L. (2021). 
The role of urban trees in reducing land surface temperatures in European cities. 
Nature Communications, 12(1), 6763.

Seager, R., Osborn, T. J., Kushnir, Y., Simpson, I. R., Nakamura, J., & Liu, H. (2019). 
Climate variability and change of mediterranean-type climates. Journal of Climate, 
32(10), 2887–2915.

Service, G. N. M. (2024a). Deutscher wetterdienst. URL https://opendata.dwd.de/
climate_environment/CDC/observations_germany/. (Accessed 12 July 2024).

Service, H. N. M. (2024b). HungaroMet. URL https://odp.met.hu/climate/observations_
hungary/. (Accessed 12 July 2024).

Shashua-Bar, L., Rahman, M. A., Moser-Reischl, A., Peeters, A., Franceschi, E., Pret-
zsch, H., et al. (2023). Do urban tree hydraulics limit their transpirational cooling? 
A comparison between temperate and hot arid climates. Urban Climate, 49, Article 
101554.

Sheng, S., & Wang, Y. (2024). Configuration characteristics of green-blue spaces for 
efficient cooling in urban environments. Sustainable Cities and Society, 100, Article 
105040.

Simon, S. M., Glaum, P., & Valdovinos, F. S. (2023). Interpreting random forest analysis 
of ecological models to move from prediction to explanation. Scientific Reports, 
13(1), 3881.

Tejedor, E., Benito, G., Serrano-Notivoli, R., González-Rouco, F., Esper, J., & Büntgen, U. 
(2024). Recent heatwaves as a prelude to climate extremes in the western 
mediterranean region. Npj Climate and Atmospheric Science, 7(1), 218.
14 
Thome, K. (2001). Absolute radiometric calibration of Landsat 7 ETM+ using the 
reflectance-based method. Remote Sensing of Environment, 78(1–2), 27–38.

Tran, H., Uchihama, D., Ochi, S., & Yasuoka, Y. (2006). Assessment with satellite data 
of the urban heat island effects in Asian mega cities. International Journal of Applied 
Earth Observation and Geoinformation, 8(1), 34–48.

Varquez, A., & Kanda, M. (2018). Global urban climatology: A meta-analysis of air 
temperature trends (1960–2009). npj climate and atmospheric science, 1 (1), 32.

Wang, X., Rahman, M. A., Mokroš, M., Rötzer, T., Pattnaik, N., Pang, Y., et al. (2023). 
The influence of vertical canopy structure on the cooling and humidifying urban 
microclimate during hot summer days. Landscape and Urban Planning, 238, Article 
104841.

Weng, Q. (2009). Thermal infrared remote sensing for urban climate and environmental 
studies: Methods, applications, and trends. ISPRS Journal of Photogrammetry and 
Remote Sensing, 64(4), 335–344.

Wulder, M. A., White, J. C., Loveland, T. R., Woodcock, C. E., Belward, A. S., Cohen, W. 
B., et al. (2016). The global landsat archive: Status, consolidation, and direction. 
Remote Sensing of Environment, 185, 271–283.

Xu, J., Jin, Y., Ling, Y., Sun, Y., & Wang, Y. (2025). Exploring the seasonal impacts of 
morphological spatial pattern of green spaces on the urban heat island. Sustainable 
Cities and Society, Article 106352.

Yao, Y., Chang, C., Ndayisaba, F., & Wang, S. (2020). A new approach for surface urban 
heat island monitoring based on machine learning algorithm and spatiotemporal 
fusion model. IEEE Access, 8, 164268–164281.

Yue, W., Liu, X., Zhou, Y., & Liu, Y. (2019). Impacts of urban configuration on 
urban heat island: An empirical study in China mega-cities. Science of the Total 
Environment, 671, 1036–1046.

Zhang, Y., Ge, J., Wang, S., & Dong, C. (2025). Optimizing urban green space 
configurations for enhanced heat island mitigation: A geographically weighted 
machine learning approach. Sustainable Cities and Society, 119, Article 106087.

Zhao, L., Li, T., Przybysz, A., Liu, H., Zhang, B., An, W., et al. (2023). Effects of urban 
lakes and neighbouring green spaces on air temperature and humidity and seasonal 
variabilities. Sustainable Cities and Society, 91, Article 104438.

Zhu, W., Sun, J., Yang, C., Liu, M., Xu, X., & Ji, C. (2021). How to measure the urban 
park cooling island? A perspective of absolute and relative indicators using remote 
sensing and buffer analysis. Remote Sensing, 13(16), 3154.

Zölch, T., Rahman, M. A., Pfleiderer, E., Wagner, G., & Pauleit, S. (2019). Designing 
public squares with green infrastructure to optimize human thermal comfort. 
Building and Environment, 149, 640–654.

http://refhub.elsevier.com/S2210-6707(25)00389-0/sb53
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb53
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb53
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb53
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb53
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb53
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb53
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb54
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb54
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb54
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb54
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb54
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb55
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb55
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb55
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb55
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb55
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb55
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb55
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb56
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb56
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb56
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb56
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb56
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb57
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb57
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb57
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb57
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb57
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb58
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb58
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb58
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb58
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb58
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb59
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb59
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb59
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb59
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb59
https://opendata.dwd.de/climate_environment/CDC/observations_germany/
https://opendata.dwd.de/climate_environment/CDC/observations_germany/
https://opendata.dwd.de/climate_environment/CDC/observations_germany/
https://odp.met.hu/climate/observations_hungary/
https://odp.met.hu/climate/observations_hungary/
https://odp.met.hu/climate/observations_hungary/
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb62
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb62
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb62
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb62
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb62
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb62
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb62
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb63
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb63
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb63
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb63
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb63
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb64
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb64
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb64
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb64
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb64
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb65
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb65
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb65
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb65
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb65
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb66
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb66
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb66
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb67
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb67
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb67
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb67
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb67
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb68
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb68
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb68
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb69
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb69
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb69
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb69
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb69
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb69
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb69
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb70
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb70
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb70
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb70
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb70
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb71
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb71
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb71
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb71
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb71
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb72
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb72
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb72
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb72
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb72
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb73
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb73
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb73
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb73
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb73
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb74
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb74
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb74
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb74
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb74
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb75
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb75
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb75
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb75
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb75
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb76
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb76
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb76
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb76
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb76
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb77
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb77
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb77
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb77
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb77
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb78
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb78
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb78
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb78
http://refhub.elsevier.com/S2210-6707(25)00389-0/sb78

	Do urban green spaces cool cities differently across latitudes? Spatial variability and climatic drivers of vegetation-induced cooling
	Introduction
	Methods
	Study Area
	Datasets used
	Super-resolving Land Surface Temperature (LST)
	Quantification of UGS contribution at the urban and latitudinal gradient 
	Statistical modeling and analysis

	Results
	Super resolved land surface temperature
	Urban land cover distribution and surface temperature
	UGS Contribution Index analysis within urban boundaries
	UGS surface temperature intensity and aridity index
	Modeling for relative contribution of different variables over vegetational cooling

	Discussions
	LULC distribution and surface temperature across urban gradients
	Role of urban morphology and vegetation types on cooling across urban gradients
	Climatic interpretations of UGS surface thermal intensities and aridity trend within a narrow latitudinal range
	Climatic Contributors to Urban Thermal Intensity and Dynamics
	Limitations of the study and future scope

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Appendix
	Data availability
	References


